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Abstract

Based on the Vlasov-Maxwell equations describing the
self-consistent nonlinear beam dynamics and collective
processes, the evolution of an intense sheet beam prop-
agating through a periodic focusing field has been stud-
ied. In an earlier paper [1] it has been shown that in
the case of a beam with uniform phase space density the
Vlasov-Maxwell equations can be replaced exactly by the
macroscopic warm fluid-Maxwell equations with a triple
adiabatic pressure law. In this paper we demonstrate that
starting from the macroscopic fluid-Maxwell equations a
nonlinear Schroedinger equation for the slowly varying
wave amplitude (or aset of coupled nonlinear Schroedinger
equationsfor the wave amplitudesin the case of multi-wave
interactions) can be derived. Properties of the nonlinear
Schroedinger equation are discussed, together with soliton
formation in intense particle beams.

1 INTRODUCTION

Of particular importance in modern accelerators and
storage rings operating at high beam currents and charge
densities are the effects of the intense self-fields produced
by the beam space charge and current on determining de-
tailed equilibrium, stability and transport properties. In
general, a complete description of collective processes in
intense charged particle beams is provided by the Vlasov-
Maxwell equations for the self-consistent evolution of the
beam distribution function and the electromagnetic fields.
As shown in [1] in the case of a sheet beam with con-
stant phase-space density the Vlasov-Maxwell equations
are fully equivalent to a warm-fluid model with zero heat
flow and triple-adiabatic equation-of-state.

In the present paper we demonstrate that starting from
the hydrodynamic equations, and using the renormalization
group (RG) technique[2, 3, 4, 5] anonlinear Schroedinger
equation for the slowly varying single-wave amplitude can
be derived. The renormalized solution for the beam den-
sity describes the process of formation of periodic holesin
intense particle beams.

2 THEHYDRODYNAMIC MODEL
We begin with the hydrodynamic model derivedin[1]
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Here o(x;s) = n(x;s)/N and v(z;s) are the normal-
ized density and the current velocity, respectively, G(s +
S) = G( ) is the periodic focusing lattice coefficient,
va = 3Po /2n3 is the normalized thermal speed-squared,
and Py /73 = N2/12A2 isaconstant coefficient [1], where
N isthe area density of sheet beam particles, and A is the
constant phase-space density. Moreover, ¢ (x; s) isthe nor-
malized self-field potential
epd(x; 8)
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where ¢(z; s) is the electrostatic (space-charge) potential,
my and e, are the rest mass and charge of a beam particle,
and g, and v, are the relative particle velocity and Lorentz
factor, respectively. Findly, the quantity K isthe normal-
ized self-field perveance defined by

2Neb
mb'Vb ﬁb myyp B2
In what follows the analysis is restricted to the smooth
focusing approximation
G(s) = G = const, (2.2

and assume that there exist nontrivial stationary solutions
to (2.1) in the interval z € (—2(7),2(1)), and that the
sheet beam density is zero (¢ = 0) outside of the interval.
The change of variables
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enables usto rewrite (2.1) in the form
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Clearly, the system (2.4) possesses a stationary solution
G _ . Ge ]
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(2.5)
Here, the uniform density o is normalized according to
o) gt = L 21K (2.6)
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3 RENORMALIZATION GROUP
REDUCTION OF THE
HYDRODYNAMIC EQUATIONS

Following the basic idea of the RG method, we represent
the solution to equations (2.4) in the form of a standard
perturbation expansion in aformal small parameter e as

e=00+ Y €or => e, (31
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Before proceeding with explicit cal cul ations order by order,

we notethat in all ordersthe perturbation equations acquire
similar general form. Eliminating v,, and ¥,,, it is possible
to obtain asingle equation for ¢,, aloneg, i.e,
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where the functions «.,, (¢; s) and 3,,(&; s) involve contri-
butions from previous orders and are considered known. It

is evident that in first order «; = 51 = 0. Imposing the
condition
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which means that linear perturbation to the uniform sta-
tionary density oo should average to zero and not affect the
normalization properties on the interval (0, 2(7) + z(+)),
we obtain the first-order solution
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m##0

(3.3)
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Here, A,,, are constant complex wave amplitudes, and the
following conventions and notations
G
—Wm, 0= ?7 A—
have been introduced. Moreover, the discrete mode fre-
guencies w,,, are determined from the dispersion relation
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In addition, the first-order solution for the current velocity

can be expressed as
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In obtaining the second-order perturbation equation
(3.2), we note that
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Thus the second-order solution for the density 02(&; s) is
found to be
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Having determined o5, the second-order current velocity
v2(&; s) can be found in a straightforward manner. The re-
sultis

1 ; . .
v2(&§58) = — Z /BmkAmAkel[Xm(S’S)J’_Xk(f’s)]7

Q00 o
(3.12)
where
Wi Wm + Wk
mk — 7 - 7. Y%mk, m—m:O- 3.13
Brmk Foo o Bm, (313)

Inthird order, thefunctions a3 and 35 entering the right-
hand-side of equation (3.2) can be calculated utilizing the
already determined quantities from the first and second or-
ders, according to
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It is important to note that the right-hand-side of equation
(3.2) for p3 contains terms which yield oscillating terms
with constant amplitudesto the solution for p3. Apart from
these, there is a resonant term (proportional to exm (&)
leading to a secular contribution. To complete the renor-
malization group reduction of the hydrodynamic equations,
we select this particular resonant third-order term on the
right-hand-side of equation (3.2). The latter can be written
as
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Some straightforward algebra yields the solution for
03(&; s) to eguation (3.2) in the form
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where the dots stand for non-secular oscillating terms.
Moreover, the amplitude P,,,(¢; s) is secular and satisfies
the equation
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where the operator £, is defined by
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We can now construct the perturbative solution for o up
to third order in the small parameter €. Confining attention
to the constant stationary density oo and the fundamental
modes (first harmonic in the phase x,,,), we obtain
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Following the basic philosophy of the RG method, we in-
troduce the intermediate coordinate X and “time” S and
transform equation (3.21) to
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Note that the transition from eguation (3.21) to eguation
(3.22) can aways be performed by enforcing the constant
amplitude A4,,, to be dependent on X and S, which isin
fact the procedure for renormalizing the standard perturba
tion result. Sincethe general solution for o(¢; s) should not
depend on X and S, by applying the operator L (X;9)
[which is the same as that in equation (3.20) but with
¢ — X and s — S] on both sides of equation (3.22), we
obtain

Lon(X:8)Am(X;58) =D T Am (X5 8)| Ap(X; 9)[%,
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wherewe have dropped the formal parameter € on theright-
hand-side. Since the above equation should hold true for
any choiceof X and S,wecanset X = ¢and S = s.
Thus, we obtain the so-called proto RG equation [3, 4, 5]
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Introducing the new variable
2 3
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and neglecting the second order derivatives 92/0s* and
0?/0s50¢,,, wefindly arrive at the RG equation for the m-
th mode amplitude
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4 THE NONLINEAR SCHROEDINGER
EQUATION FOR A SINGLE MODE

Equation (3.26) representsasystem of coupled nonlinear
Schroedinger equations for the mode amplitudes. Neglect-
ing the contribution from modes with & # m, for asingle
mode amplitude A,,,, we obtain the equation
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Itis easy to verify that T',,, is aways positive. In nonlinear
optics equation (4.1) is known to describe the formation
and evolution of the so-called dark solitons[6]. In the case
of charged particle beams these correspond to the forma-
tion of holes or cavitons in the beam. Since the renormal-
ized solution for the beam density o(¢; s) can be expressed

as

m#0
these holes have periodic structurein space £ and “time” s.

s)eix’” (&s), (4.3)

5 CONCLUDING REMARKS

Based on the renormalization group method, a system of
coupled nonlinear Schroedinger equations has been derived
for the dowly varying amplitudes of interacting beam-
density waves. Under the approximation of an isolated
wave neglecting the effect of the rest of the waves, this sys-
tem reduces to a single nonlinear Schroedinger equation
with repulsive nonlinearity. The latter describes the for-
mation and evolution of holes in intense charged particle
beams.
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