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Abstract

Building on the Renormalization Group (RG) method
the beam-beam interaction in circular colliders is studied.
A regularized symplectic RG beam-beam map, that de-
scribes successfully the long-time asymptotic behavior of
the original system has been obtained. The integral of mo-
tion possessed by the regularized RG map has been used to
construct the invariant phase space density (stationary dis-
tribution function), and a coupled set of nonlinear integral
equations for the distributions of the two colliding beams
has been derived.

1 INTRODUCTION

The problem of coherent beam-beam interaction in stor-
age ring colliders is one of the most important, and at the
same time one of the most difficult problems in contempo-
rary accelerator physics. Its importance lies in the fact that
beam-beam interaction is the basic factor, limiting the lu-
minosity of a circular collider. Nevertheless, some progress
in the analytical treatment of the coherent beam-beam in-
teraction has been made [1] - [3], it is still far from being
completely understood. In most of the references available
the basic trend of analysis follows the perturbative solution
of the Vlasov-Poisson equations, where the linearized sys-
tem is cast in the form of an eigenvalue problem for the
eigenmodes.

An important question, which still remains unanswered
is how to determine the invariant phase space density (equi-
librium distribution function) if such exist. In the present
paper we develop a novel approach to the beam-beam inter-
action in circular colliders, based on the Renormalization
Group (RG) method [4]. The basic idea of the RG method
is to remove secular or divergent terms by renormalizing
the integration constants of the lowest order perturbative
solution. Its extension to discrete symplectic maps is how-
ever not straightforward, and should be performed with
care. Here we follow the regularization procedure outlined
in the paper by Goto and Nozaki [5].

2 THE NONLINEAR BEAM-BEAM MAP

We begin with the one-dimensional model of coherent
beam-beam interaction in the vertical (q) direction de-
scribed by the Hamiltonian

Hk =
χ̇k

2
(
p2 + q2

)
+ λkδp(θ)Vk(q; θ), (2.1)
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where the normalized beam-beam potential Vk(q; θ) satis-
fies the Poisson equation

∂2Vk

∂q2
= 4π

∞∫

−∞
dpf3−k(q, p; θ), (2.2)

and

λk � 2RreN3−kβ∗
kq

γk0L(3−k)x
. (2.3)

Here, (k = 1, 2) labels the counter-propagating beams, θ
is the azimuthal angle, χ̇k = Rβ−1

kq is the derivative of the
phase advance with respect to θ, R is the mean machine
radius, re is the classical electron radius, N1,2 is the total
number of particles in either beam, β ∗

kq is the vertical beta-
function at the interaction point, and Lkx is the horizontal
dimension of the beam ribbon. In addition, the distribution
function fk(q, p; θ) is a solution to the Vlasov equation

∂fk

∂θ
+ χ̇kp

∂fk

∂q
− ∂Hk

∂q

∂fk

∂p
= 0. (2.4)

In order to build the iterative beam-beam map, we formally
solve the Hamilton’s equations of motion. As a result, we
obtain

qn+1 = qn cosωk + [pn − λkV ′
k(qn)] sin ωk,

pn+1 = −qn sin ωk + [pn − λkV ′
k(qn)] cosωk, (2.5)

where the prime implies differentiation with respect to the
spatial variable q, and ωk = 2πνk.

3 RENORMALIZATION GROUP
REDUCTION OF THE BEAM-BEAM

MAP

Multiplying the first of Eqs. (2.5) by cosωk, multiply-
ing the second one by − sinωk, and summing up the two
equations, we find

qn+1 cosωk − pn+1 sinωk = qn. (3.1)

Using Eq. (3.1) a second order difference equation

L̂qn = −ελkV ′
k(qn) sin ωk (3.2)

can be obtained. Here L̂qn = qn+1 − 2qn cosωk + qn−1,
and ε is a formal small parameter (set to unity at the end of
the calculations), taking into account the fact that the beam-
beam kick is small and can be treated as perturbation.
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Next we consider an asymptotic solution of the map (3.2)
for small ε by means of the RG method. The naive pertur-
bation expansion

qn = q(0)
n + εq(1)

n + ε2q(2)
n + · · · (3.3)

when substituted into Eq. (3.2) yields the perturbation
equations order by order

L̂q(0)
n = 0, L̂q(1)

n = −λkV ′
k

(
q(0)
n

)
sin ωk, (3.4)

L̂q(2)
n = −λkq(1)

n V ′′
k

(
q(0)
n

)
sin ωk, (3.5)

Solving the first of Eqs. (3.4) for the zeroth order contribu-
tion, we obtain the obvious result

q(0)
n = Akeiωkn + c.c. = 2|Ak| cos (ωkn + φk), (3.6)

where Ak is a complex integration constant, whose ampli-
tude and phase are |Ak| and φk, respectively. Let us assume
for the time being that the beam-beam potential Vk(q) is a
known function of the vertical displacement q. Then, we
have

V ′
k

(
q(0)
n

)
=

∞∑

M=1

C(M)
k A2M−1

k ei(2M−1)ωkn + c.c. (3.7)

Here the coefficients C(M)
k are functions of the amplitude

|Ak|, given by the expression

C(M)
k (|Ak|) =

1
π

(−1)M

|Ak|2M−1

∞∫

0

dλλVk(λ)

×J2M−1(2λ|Ak|), (3.8)

where Vk(λ) is the Fourier image of the beam-beam poten-
tial and Jm(z) is the Bessel function of the first kind of
order m. Similarly for the second derivative of the beam-

beam potential V ′′
k

(
q
(0)
n

)
, entering the second order per-

turbation equation (3.5), we obtain

V ′′
k

(
q(0)
n

)
= D(0)

k +
∞∑

M=1

D(M)
k A2M

k ei2Mωkn +c.c., (3.9)

where

D(0)
k (|Ak|) = − 1

π

∞∫

0

dλλ2Vk(λ)J0(2λ|Ak|), (3.10)

D(M)
k (|Ak|) =

1
π

(−1)M+1

|Ak|2M

∞∫

0

dλλ2Vk(λ)

×J2M (2λ|Ak|). (3.11)

From the recursion property of Bessel functions [6, 7]

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z) (3.12)

we deduce an important relation to be used later

D(N)
k −D(N+1)

k |Ak|2 = (2N + 1)C(N+1)
k . (3.13)

The solutions of the perturbation equations (3.4) and (3.5),
taking into account (3.13) are given by

q(1)
n =

iλkn

2
C(1)

k Akeiωkn +
λk sin ωk

2

×
∞∑

M=1

C̃(M+1)
k A2M+1

k ei(2M+1)ωkn + c.c., (3.14)

where for brevity the explicit form of q
(2)
n is not repro-

duced, and

C̃(N+1)
k =

C(N+1)
k

cosωk − cos(2N + 1)ωk
. (3.15)

To remove secular terms, proportional to n and n2 (in q
(1)
n

and q
(2)
n ), we define the renormalization transformation

Ak → Ãk(n) by collecting all terms proportional to the
fundamental harmonic eiωkn. Solving perturbatively the
resulting equation, we can express Ak in terms of Ãk(n).
A discrete version of the RG equation can be defined by
considering the difference Ãk(n + 1) − Ãk(n). Substitut-
ing the expression for Ak in terms of Ãk(n) into the above
mentioned difference, we can eliminate the secular terms
up to O

(
ε2

)
. The result is

Ãk(n + 1) =
[
1 + ε

iλk

2
C(1)

k − ε2
λ2

k

8
C(1)2

k (1 + i cotωk)

+iε2
λ2

k sinωk

4

∞∑

N=1

C̃(N+1)
k D(N)

k

∣
∣∣Ãk(n)

∣
∣∣
4N

]

Ãk(n).

(3.16)
This naive RG map does not preserve the symplectic sym-
metry and does not have a constant of motion. To recover
the symplectic symmetry we regularize the naive RG map
by noting that the coefficient in the square brackets, multi-
plying Ãk(n) can be exponentiated:

Ãk(n + 1) = Ãk(n)exp
[
iω̃k

(∣
∣
∣Ãk(n)

∣
∣
∣
)]

, (3.17)

where

ω̃k

(∣
∣
∣Ãk(n)

∣
∣
∣
)

= ε
λkC(1)

k

2
+ ε2

λ2
k

8

(
−C(1)2

k cotωk

+2 sinωk

∞∑

N=1

C̃(N+1)
k D(N)

k

∣
∣
∣Ãk(n)

∣
∣
∣
4N

)

. (3.18)

It is clear now that the regularized RG map (3.17) possesses
the obvious integral of motion:

∣
∣
∣Ãk(n + 1)

∣
∣
∣ =

∣
∣
∣Ãk(n)

∣
∣
∣ =

√
Jk

2
. (3.19)
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Proceeding in the same way as above and making use
of the relation (3.1), we can obtain the renormalized map
for the canonical conjugate momentum pn. As a result the
integral of motion Jk can be represented in the form of a
generalized Courant-Snyder invariant, and can be written
as

2Jk = q2 +
[p − αk(Jk)q]2

β2
k(Jk)

. (3.20)

It is important to emphasize that Eq. (3.20) comprises a
transcendental equation for the invariant Jk as a function
of the canonical variables (q, p), since the coefficients αk

and βk depend on Jk themselves.

4 THE INVARIANT PHASE SPACE
DENSITY

If an integral of motion Jk of the beam-beam map (2.5)
exists, it can be proved that the invariant phase space den-
sity f

(I)
k (q, p) [which is a solution to the Vlasov equation

(2.4)] is a generic function of Jk, that is

f
(I)
k (q, p) = Fk(Jk) (k = 1, 2). (4.1)

Here Fk(z) is a generic function of its argument. Since the
integral of motion Jk is a functional of the invariant den-
sity of the opposing beam f

(I)
3−k(q, p), Eq. (4.1) comprises

a coupled system of nonlinear integral equations for the in-
variant densities of the two counter-propagating beams. Let
us find the integral of motion [see Eq. (3.20)] up to first or-
der in the perturbation parameter ε. We have

Jk = J0 − λkC(1)
k (J0)
2

(
p2 cotωk + pq

)
, (4.2)

where

J0 =
1
2
(
p2 + q2

)
. (4.3)

The Fourier image of the beam-beam potential

Vk(λ) = −4π

λ2

∞∫

−∞
dq′

∞∫

−∞
dp′f (I)

3−k(q′, p′) cosλq′, (4.4)

obtained by solving the Poisson equation (2.2) is next sub-
stituted into the corresponding expression [see Eq. (3.8)]
for the coefficient C (1)

k (J0). Taking into account the recur-
sion relation (3.12) as well as the identity [6]

∞∫

0

dxJ2n(x) cos ax =
(−1)nT2n(a)√

1 − a2
[0 < a < 1],

(4.5)
where Tn(z) is the Chebyshev polynomial of order n, we
obtain

C(1)
k (J0) =

8
J0

∞∫

−∞
dp′

√
2J0∫

0

dq′f (I)
3−k(q′, p′)

√
2J0 − q′2.

(4.6)

Thus, we finally arrive at the system of integral equations
for the invariant phase space densities f

(I)
k (q, p)

f
(I)
k (q, p) = CkFk

[
J0 − 4λk

J0

(
p2 cotωk + pq

)

×
∞∫

−∞
dp′

√
2J0∫

0

dq′f (I)
3−k(q′, p′)

√
2J0 − q′2




, (4.7)

where

Ck =




∞∫

−∞
dp

∞∫

−∞
dqFk(q, p)





−1

. (4.8)

5 CONCLUDING REMARKS

As a result of the investigation performed, we have ob-
tained a regularized symplectic RG beam-beam map, that
describes correctly the long-time asymptotic behavior of
the original system. It has been shown that the regular-
ized RG map possesses an integral of motion, which can
be determined to any desired order. The invariant phase
space density (stationary distribution function) has been
constructed as a generic function of the integral of motion,
and a coupled set of nonlinear integral equations for the
distributions of the two colliding beams has been derived.

It is worthwhile to note that the method presented here
is also applicable to study the four-dimensional symplec-
tic beam-beam map, governing the dynamics of counter-
propagating beams in the plane transverse to the particle
orbit.
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