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Abstract

The beam breakup problem of a series of point-like
bunches passing through a circular resistive wall pipe is
treated in this paper. The solution to the problem is given
as an integral representation. The asymptotic behavior of
the solution after long time of operation is obtained.

1 INTRODUCTION

The insertion devices of the proposed PERL light source
[1] consist of twelve wigglers, each twelve meters long,
and totally 144 meters. The beam is shielded from the
surrounding environment by circular copper pipes of ra-
dius b = 2.5 mm. These pipes are in turn placed inside of
the wigglers. The proposed injection cycle is twelve hours.
One may ask whether the beam can survive its interaction
with the beam-induced resistive-wall wakefield for such a
long time, particularly when the beam pipe radius b is so
small. We address this problem in this paper.

The paper is organized as follows: In Section 2, the
equation of motion for the beam breakup problem (bbu
problem) is established, and the eigenvalue problem associ-
ated with this equation is solved. In Section 3, we solve the
initial value problem; the solution consists of an integral
representation of the transverse position of the M th bunch
at the longitudinal position z in terms of the eigensolution
[2] and the initial bunch position of the preceding bunches.
The asymptotic behavior, M → ∞, of the integral rep-
resentation is found in Section 4. In this paper, we treat
only the case where only the leading bunch corresponding
to M = 0 is misaligned initially [3]. In Section 5, we give
a brief numerical discussion based on the proposed PERL
parameters.

2 EIGENVALUE PROBLEM

An electron beam consisting of a series of identical point
like bunches passes through a circularly cylindrical pipe of
radius b and conductivity σ. The entrance to the pipe is
located at z = 0, and the M thbunch, M = 0, 1, 2..., moves
in the z direction according to z = ct+Mc τB, where τB ≡
1/fB is the bunch separation in units of seconds. We use
y to denote either the vertical or the horizontal coordinate
of the beam particle. Inside of the pipe, the equation of
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motion for a particle in the bunch M is

y′′
M (z) + k2

yyM (z) = a
M−1∑

N=0

yN (z)/
√

M − N , (1)

where the right hand side of this equation represents
the effects of the beam induced force, and a =
4Iavδskin/γIAlvenb3 with Iav = eNB/τB , eNB = bunch
charge, IAlven = 4πεomc3/e � 17000Amp, γ = the rela-
tivistic energy factor , and skin depth δskin =

√
2/µoσωB .

The factor 1/
√

M − N is a consequence of the fact that
the transverse wakefield for τ = t − z/c is proportional
to 1/

√
τ [4]. We ignore the effects of the wake force of a

bunch on itself; as a consequence, we take M − 1 instead
of M as the upper limit of the sum in (1).

The right hand side of (1) is a convolution sum, there-
fore, it can be diagonalized by a Fourier transform. The
definitions F (θ) =

∑∞
M=1 eiMθ/

√
M and ξ(θ, z) =∑∞

M=0 yM (z)eiMθ , together with (1) lead to

yM (z) =
1
2π

∫ π

−π

dθe−iMθξ(θ, z) , (2)

and
ξ′′(θ, z) + k2

yξ(θ, z) = aF (θ)ξ(θ, z) . (3)

The function F (θ) can be written as [5]

F (θ) =

√
iπ

θ
+

∞∑

n=0

ζ(1/2 − n)
(iθ)n

n!
, (4)

∼=
√

iπ

θ
− 1.460 − 0.208iθ + O(θ2) (5)

where ζ(x) is Riemann’s ζ function.
We see F (θ) has a branch point at θ = 0. This implies,

through (3), that ξ(θ, z) also has a singularity in θ at the
same position. It follows from causality that this singularity
lies below the contour of (2) [3].

The equation(3) can be regarded as an eigenvalue equa-
tion with different coherent solutions distinguished by dif-
ferent values of θ. The eigenvalue for the mode θ is

kc(θ) =
√

k2
y − aF (θ) , (6)

and the corresponding eigenvectors are cos[kc(θ)z],
and sin[kc(θ)z]. We solve below the transient beam
breakup problem by relating it to the above coherent so-
lutions.
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3 INITIAL VALUE PROBLEM

We find in this section the transient solution to the equa-
tion of motion (1). In other words, we find an expression
for yM (z) in terms of the initial conditions yM0 ≡ yM (z =
0) and y′

M0 ≡ y′
M (z = 0).

We first note that the transient solution of (3) is

ξ(θ, z) = ξ0(θ) cos[kc(θ)z] +
ξ′0(θ)
kc(θ)

sin[kc(θ)z] , (7)

expressing ξ(θ, z) in terms of the initial conditions ξ0(θ)
and ξ′0(θ). Applying (2) to both sides of this equation, we
obtain

yM (z) = yM0 cos kyz + y′
M0 sin kyz /ky

+
1
2π

M−1∑

N=0

yN0

∫ π

−π

dθe−i(M−N)θ cos kc(θ)z

+
1
2π

M−1∑

N=0

y′
N0

∫ π

−π

dθe−i(M−N)θ

× sinkc(θ)z / kc(θ) . (8)

This is the transient solution of the equation of motion (1).

4 ASYMPTOTIC BEHAVIOR

In this paper, we study the equation (8) correspond-
ing to the case where only the first bunch corresponding
to M = 0 is initially excited. Specifically, we assume
yM0 = y00δM,0, and y′

M0 = 0, ∀M . Then for M 	= 0,
the equation (8) becomes

yM (z) =
1
2π

y00

∫ π

−π

dθe−iMθ cos kc(θ)z . (9)

The following representation for the above equation is use-
ful:

yM (z) = y00ηM (z) = y00[ η
(+)
M (z) + η

(−)
M (z) ] , (10)

where

η±
M =

1
4π

∫ π

−π

dθeΦ
(±)
M

(θ) , (11)

with
Φ(±)

M (θ) = −iMθ ± ikc(θ)z . (12)

We wish to find the asymptotic behavior of (9), or equiv-
alently of (11), when M → ∞. The method we use is
that of saddle point. It is well known that the asymptotic
behavior of the integral (9) is determined by the behavior
of cos kc(θ) near θ = 0. In other words, the saddle point
θsaddle → 0 as M → ∞. Recall that the function F (θ) is
given for small θ by (5). We restrict our discussion to the
cases where this function inside the integrand of (9) can be
approximated by the singular part

√
iπ/θ in the effective

saddle-point integration region. Thus, we set

kc(θ) =
√

k2
y − a

√
iπ/θ (13)

throughout the rest of the paper. For PERL, as represented
by Table 1 in Section 5, | √iπ/θ | ∼ 10−6 
 1.460 for
θ lying within the effective Gaussian integration region of
the saddle point method.

In carrying out the asymptotic analysis below, we shall
distinguish two cases:
First Case: This is the case where either ky = 0, or M is
so large that in the effective region of the integrand, the
absolute value of the

√
iπ/θ term in (13) � k2

y . As a
consequence, we can approximate for this case, kc(θ) ∼=
a′i(i/θ)1/4 with a′ =

√
a
√

π. This case will be referred to
as the no focusing case. The following condition has to be
satisfied in order for the non-focusing approximation to be
applicable: χN ≡ |a√

iπ/θN |/k2
y � 1, where we use the

notation θN for θsaddle in this case.
Second Case: In this case, k2

y in (13) dominates over the
√

iπ/θ term. Therefore, kc(θ) ∼= ky − 2a′′
√

i
θ , where

a′′ = a
√

π/4ky. This case will be referred to as the strong
focusing case. The condition for the validity of this ap-
proximation is χS ≡ k2

y/|a√
iπ/θS | � 1, where we use

the notation θS for θsaddle in this case.

4.1 No Focusing (N) case

The relevant equations are (10) and (11) with

Φ(±)
M (θ) = −iMθ ∓ a′z

(
i

θ

)1/4

. (14)

In locating the saddle points, it suffices to discuss only the
function Φ(+)

M (θ), since Φ(−)
M (θ) is related to Φ(+)

M (θ) by an

analytic continuation. The condition Φ ′(+)
M (θN ) = 0 gives

the following five saddle points:

θN = −i|θN |hN , (15)

where

hN = (eiπ/5, ei3π/5,−1, e−iπ/5, e−i3π/5) , (16)

and

|θN | =
(

a′z
4M

)4/5

. (17)

We need the second derivative of Φ(+)
M evaluated at the sad-

dle points. They are

Φ′′(+)
M (θN ) =

5a′z
16

1
|θN |9/4

h∗
N , (18)

where h∗
N is the complex conjugate of (16).

The most important contribution to (11) comes from the
saddle point corresponding to the third element of (16).
After the routine saddle-point Gaussian integration, fol-
lowed by some change of variables, we obtain the follow-
ing asymptotic result:

η(t) =
2

5
√

2π

τB

tN

(
tN
t

)9/10

exp[ (t/tN )1/5 ] , (19)
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where we have set t = MτB and used the notation η(t) for
ηM (z), and the growth time

tN = τB
1
4

(
4
5

)5 1
a′4z4

. (20)

4.2 Strong Focusing (S) case

Again, we treat (10) and (11), but

Φ(±)
M (θ) = −iMθ ± iz

(
ky − 2a′′√i/θ

)
. (21)

The asymptotic treatment of this case is similar to that of
the no-focusing case. The condition Φ ′(+)

M (θS) = 0 gives
the following three saddle points:

θS = |θS |(eiπ/6, ei5π/6,−i) , (22)

where

|θS | =
(

a′′z
M

)2/3

, (23)

and the corresponding second derivatives are

Φ′′(+)
M (θS) =

3a′′z
2|θS |5/2

(e−i2π/3, e+i2π/3, 1) . (24)

The standard saddle point integration gives the leading
asymptotic contribution

η(t) =
4

3
√

2π

τB

tS

(
tS
t

)5/6

exp[ (t/tS)1/3 ]

× cos[
√

3(t/tS)1/3 + π/6 ] cos[kyz] , (25)

where the growth time

tS = τB
27

33

k2
y

a′4z2
. (26)

That, from (20) and (26), tS ∝ (k2
yz2) tN is interesting.

5 AN EXAMPLE: PERL

We start by examining the bbu effect on the PERL beam
passing through the insertion devices [1]. A preliminary
parameter list of PERL beam is given in Table 1. For sim-
plicity, we assume that there are no gaps between the in-
sertion devices; in other words, we approximate the twelve
insertion devices with gaps in between by a continuous pipe
of 144 meters.

There is no horizontal focusing provided by a planar
wiggler. Consequently, no focusing approximation should
be used for bbu problem in the horizontal plane. Numer-
ical computation gives η(t) ∼ 1089 and the growth time
tN ∼ 60 ns. Clearly, bbu can not be ignored for PERL.
The situation can be improved by increasing the pipe ra-
dius b and by providing some external focusing ky .

We try ky = 3 and b = 3 mm; values of the other pa-
rameters of Table 1 remain unchanged. We obtain χN ∼
0.1 and χS ∼ 6. The Strong-focusing approximation

Table 1: PERL parameters
fB 1.3 GHz
b 2.5 mm

pipe length 144 m
conductivity σ 6× 107 /(Ohm meter)
beam energy 3 GeV
bunch charge .15 nC

t = MτB 12 hours

is marginally applicable. Let’s apply it. The results are
η(t) ∼ 1 and tS ∼ 2 seconds. The number η(t) ∼ 1 is
actually an overly optimistic estimate. In Obtaining (25),
we assumed that only the leading bunch corresponding to
M = 0 is initially dislocated. It can be shown [3] that had
we assumed all the bunches to be initially misaligned, then
the result would have been different; for a large M , the
coefficient in front of the exponential factor in (25) would
have been multiplied by a large number. Fortunately, (26)
as well as the exponential and the sinusoidal factors in (25)
are consequences of the eigenvalue problem; they are inde-
pendent of the initial condition. In summary of this para-
graph, tS ∼ 2 seconds is a valid estimate of the growth time
corresponding to the beam parameters we have chosen, ir-
respective of the initial condition. With such a large growth
time, it should be easy to take care of the bbu problem for
PERL by designing an appropriate feedback damper.
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