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Abstract 
  Existing computer codes experience severe problems in 
wake field calculations for long structures. To overcome 
these a new implicit scheme for rotationally symmetric 
geometry has been developed. Unlike previous conformal 
approaches this scheme has a second order convergence 
without the need to reduce the maximal stable time step 
of conventional staircase method. It features zero disper-
sion in longitudinal direction and by using a moving mesh 
it allows for wake potential calculation for very long 
structures. Several numerical examples are presented. 

1 INTRODUCTION 
 The finite difference methods are applied successfully for 
calculation of wake fields in accelerators [1]. However 
the existing computer codes experience severe problems 
in short range wake field calculation for ultra short 
bunches [2]. Two main sources of the problems are the 
grid dispersion and the staircase geometry approximation.  
  To develop the scheme without dispersion in longitudi-
nal direction we used the idea of the paper [3], namely to 
split the space operator in the transversal and the longitu-
dinal parts and to use an implicit scheme based on the 
transversal part.  The original staircase scheme of the 
work [3] allows only calculation for the fully rotationally 
symmetric case with bunches moving along the axis. As 
we show in this paper the same idea can be used for the 
higher order azimuthal modes as well. The new scheme is 
conditionally stable and allows to use the �magic� time 
step, equal to the space step in the longitudinal direction 
divided by the speed of light. 
  To overcome the staircase problem a conformal scheme 
described in the paper [4] is used. Unlike other conformal 
approaches this scheme is second order convergent with-
out the need to reduce the maximal stable time step of the 
conventional staircase method. This feature allows to use 
a moving mesh and the �magic� time step in the new 
implicit conformal scheme.  

2 WAVE EQUATION 
  We consider a perfectly conducting structure S  and 
assume that the bunch is moving in domain Ω  with the 
velocity of light c  and is characterized by a charge distri-
bution ρ . The bunch introduces an electric current 

ρ=j c  and  thus we have to solve for 

t
∂∇ × = +
∂

H D j , 
t

∂∇ × = −
∂

E B , ρ=⋅∇ D , 0=⋅∇ B (1) 

  1µ−=H B , ε=D E , x ∈Ω , 0× =n E , x S∈  
 The full field ,D H   can be decomposed into the field of 
the bunch in free space 0 0,D H  and a scattered field 
 0s = −D D D , 0s = −H H H .  (2) 

The scattered field can be presented by vector potential 

A : s = ∇ ×D A , s

t
∂=
∂

H A .  (3) 

 Substitution of the presentation (3) in the system (1) 
gives the problem for the vector potential A   

2

2 2c t
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∂

A A ,   0=⋅∇ A ,  x ∈Ω , (4) 

∫ ∞−
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dτ0HnAn , 0

t

dτ
−∞

×∇ × = − ×∇ ×∫n A n H , x S∈ . 

3 IMPLICIT SCHEME 
  The new scheme will be introduced in context of Finite 
Integration Technique [5]. Starting from Maxwell�s equa-
tion in integral form and introducing decomposition of the 
computation domain into a collection of cells, we obtain a 
set of discrete equations on a grid doublet [5]:  

  , , , .d d
dt dt

= − = + = =Ce b Ch d j Sb 0 Sd q
)) ) ) ))) ) ) ) )) % %  (5)  

They are completed by the discrete form of the material 
relations  1 1,ε µ− −= =e M d h M b

) )) ) )) . To establish a time-

stepping algorithm we can approximate the time deriva-
tives in (5) by central difference expressions with 

0nt t n t= + ∆ : 
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where we have split the operator T=C C%  into the trans-
versal operator 1

TC  and the longitudinal operator 2
TC  and 

θ  is a numerical parameter to be defined. If we note the 
longitudinal coordinate by z  and the transversal coordi-
nates by ,r ϕ  , the operators have the form 
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  From the system (6) we receive a numerical scheme for 
the vector potential A : 
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where the vectors  0h
)

, sh
)

 correspond to the fields 0H , 
sH  in the representation (2). This scheme approximates 

the problem (4). ( )mF  approximates the boundary condi-
tions.  
  It is easy to show [4] that all eigensolutions of the spatial 
discretization correspond to non-dissipative and non-
growing oscillations with a real-valued circular frequency 

j jω λ=  and the time-dependency { }( ) Re ji tt e ω∝h
)

. 

  The next step in the stability analysis is the stability of 
the time-stepping scheme. A spectral stability condition is  

, 0.25 .c t z θ∆ ≤ ∆ ≤    (8) 
  With the time step c t z∆ = ∆  allowed by condition (8) 
the scheme has no dispersion in the longitudinal direction 
and a moving mesh can be employed easily. The results in 
this case are fully equivalent to a stationary mesh as no 
interpolation is necessary. 

To reduce dispersion in the transversal direction we 
should use minimal value of θ . In our numerical exam-
ples we used 1/ 3θ = . 

4 GEOMETRY OF REVOLUTION 
  In this section we describe the realization of the above 
scheme for the case of a rotationally symmetric geometry. 
  For a bunch moving offset a  from and at speed of light 
c  parallel to the axis of a rotationally symmetric struc-
ture, the source current j  can be presented as 
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where ( )sλ  is the longitudinal charge distribution.      
  The numerical scheme (7) for mode m  has the form 

( )
( )

1 1

1 1 1

1 2 1 1

2

2

,

r

z z

n n n T n n
r r r z z r r

n T n T n
r z r z r

t

m m

ϕ

ϕ

µ ε

ϕε ε ε

− −

− − −

− − + −∆ − + = + +

+ − − +

M a a a P M P a F

M a P M P a M P a
 

( )
( )

1 1

1 1 1

1 2 1 12

,

r

z r z

n n n T n n
z z

T n n n
r r z z r r

t

m m

ϕ ϕ ϕ ϕ ϕ ϕµ ε

ϕε ε ε

− −

− − −

− − + −∆ − + = + +

+ − −

M a a a P M P a F

P M P a P M a P M a
 

( )
( )

1 1

1 1 1

1 2 1 1

2

2

,

z r

r

n n n T n
z z z z

T n n T n
r z r z r r z

t m

m
ϕ ϕ

ϕµ ε

ε ε ε

− −

− − −

− − + −∆ − + = −

− + + −

M a a a M P a

P M P a F P M P M a
 (9) 

where 1 1(1 2 )n n n n
p p p pθ θ θ+ −≡ + − +a a a a , , ,p r zϕ= . Note 

that 0n
z ≡F  if the bunch moves parallel to the axis. 

  When a bunch moves along the axis, only the ϕA  com-
ponent is different from zero and our scheme with 

0.5θ =  is reduced to the scheme of the paper [3]. 
  In the general case, at the first step we calculate the 
vector 1n

z
+a  and have to solve the linear system with the 

matrix 1 1 1
2 2 2

-1
z j z r

T
r re

t m tµ µ εθ θ− − −− ∆ + ∆I M P M P M M . This 

matrix is a block diagonal one with zN  blocks. Each 
block is a three band matrix of size rN  and can be re-
solved by ( )rO N  operation. 
  Now we can use the component  1n

z
+a  in the equations 

for components 1n
r
+a , 1n

ϕ
+a  which are coupled. We have to 

solve a system with the matrix 
1 1 1

1 1 1

2 2

2
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r z r z

-1
z z

T
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T
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 + ∆


 − ∆
 

I M M M M P

M P M I M P M P
 , 

which is a block diagonal one with zN  blocks. Each 
block is of size 2 rN  and has a seven band  structure  as 
shown in Fig.1. 

  Fig. 1. Reduction of the matrix 
It can be reduced to a three diagonal type by ( )rO N op-
eration.  This means its resolving takes only ( )r zO N N  
operations and the algorithm demands the same order of 
operations as the explicit method. 
  Note that because of material matrices in staircase ap-
proximation are diagonal it is possible to use the diver-
gence relation  ( )1 1 1

1 1 1

r z
r r z zm

ϕϕ µ µ µ− − −
− − −= +a M P M a P M a  and 

eliminate the ϕa  component from the equation for the ra  
component. This gives a more effective algorithm.  

However the last relation is useless in the case of non-
diagonal material matrices as used in the conformal 
scheme.  

5 CONFORMAL SCHEME 
  With the standard staircase approximation of curved 
boundaries we receive only a first order convergent 
scheme in the 2

hL  grid norm. To obtain a second order 
convergent scheme we use the approach of  the paper [4]. 
  We allow the cells of the grid to be only partially filled 
by a PEC material with an arbitrarily shaped interface. 
Since the area of the cells near the boundary is reduced, 
the time step in the conformal scheme has to be reduced, 
too.  To overcome this problem and to receive a stable 
algorithm without reducing the time step we modify only 
the material matrix 1µ−M  which is a composition of di-

agonal matrices 1µ− =M RM% , 1
pijkµ−=M , 1

pijkr−=R% % , 

pijk
pijk

pijk

s
S

µ µ= ,  pijk
pijk

pijk

S
r

L
=%

%
, where s  denotes a reduced 

cell area [4]. A new material matrix 1µ−M%  is composed by 

the relation 1
T

µ− =M V DV% , where 0= >D RU%  is a di-
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agonal matrix, responsible for the order of the approxima-
tion, and V  is a matrix of weights.  In [4] we described 
building of the matrix 1µ−M%  for explicit algorithm. Since 

the scheme is implicit in transversal direction we use 
weights only in longitudinal direction and only for facets 
in rz  and zϕ  planes.   
 The material matrix 1µ−M%  is a non-diagonal one. To be 

able to use the algorithm of section 4, we should modify 
the scheme (7). If we note by 1

0
µ−M%  the diagonal part of 

the matrix  1µ−M% , the modification of the scheme (7) is   

 
( ) ( )0 1 0 1

1 1

(1 2 )

2 ( ) ,

n n n

n n n n

θ θ θ+ −

−

+ = − − + +

+ − − + +

I T a T a a

a a T L a F
    (10) 

 1 1
0 2 0

1
Tt µ ε− −= ∆T M CM C% , ( )1 1 1

1 2 0
1
Tt µ µ ε− − −= ∆ −T M M CM C% % , 

where the operator 1T  is different from zero only in some 
boundary cells.  
  In all examples shown in the next section we used the 
scheme (10) with moving mesh. 

6 NUMERICAL EXAMPLES 
  The conformal scheme (10) is included in a newly de-
veloped code. In the current version only the fully 
rotationally symmetric case ( 0m = ) is realized. However, 
the higher order modes algorithm was tested using Matlab 
6.0.  

Fig.2. Error in loss factor for pillbox and sphere 
 

  To calculate the wake potential Wλ  we used indirect 
method [6]. For 0m =  the used formula is 

, , ( ) /

1 1( )
C r z t z s c

W s rA dz A A dr
Q r r s zλ ϕ ϕ ϕ

= +

∂ ∂ ∂  = − + −   ∂ ∂ ∂  
∫    

  Fig.2 shows the loss factor error 1
calcL L Lδ −= −   for 

a Gaussian bunch with 0.5σ = cm passing through a 
pillbox (Fig.2 left) and a spherical resonator (Fig.2 right). 
The pillbox has the length 1.8  cm and radius 0.9  cm. 
The sphere has the diameter 1.8  cm.  The analytical loss 
factor L  is equal to 0.589459 V pC  for the pillbox and  
0.152446 V pC  for the sphere. The error for stationary 
mesh is demonstrated by lines. The results for moving 
mesh are shown by triangles and circles.  In Fig. 3 (left) 
the geometry of a taper is drawn. In Fig. 3(right) the error 

δ  relative to the extrapolated loss factor 
-7.63777L V/pC=  for  bunch with 0.1σ = cm is shown. 

Fig.3. Error in loss factor for a taper 

    Fig.4.Wake potential of a collimator 
 
  Fig.4 demonstrates the wake potential for a collimator of 
490 cm  length and the bunch with 0.1σ = cm. The solu-
tion is compared to the analytical estimation [7]. 
  The conformal scheme shows second order convergence 
and gives results of high accuracy with only 5 mesh steps 
per σ  in all tests. Note that the staircase scheme in the 
last example gives at the same resolution an error in ex-
cess of 300 %. 
   
  Helpful discussions with R. Schuhmann are acknowl-
edged. 

REFERENCES 
[1] Weiland, T., On the Numerical Solution of Maxwell's 

Equations and Applications in Accelerator Physics, 
Particle Accelerators, Vol. 15, 1984, pp. 245-291. 

[2] Meincke, O., Wagner, A., Zotter, B., New Wake Field 
and Bunch Lengthening Codes, SL-Note-97-17(AP), 
CERN, 1997. 

[3] Novokhatski, A., Timm, M., Weiland, T., Transition 
Dynamics of the Wake Fields of Ultra Short Bunches, 
ICAP� 98, Monterey, California, USA , Sept.1998, 
www.slac.stanford.edu/xorg/icap98. 

[4] Zagorodnov, I., Schuhmann, R., Weiland, T., A Uni-
formly Stable Conformal FDTD-Method on Cartesian 
Grids, Int. J. Numer. Modelling, submitted. 

[5] Weiland, T., Time Domain Electromagnetic Field 
Computation with Finite Difference Methods, Int. J. 
Numer. Modelling, Vol. 9, 1996, pp. 295-319. 

[6] Napoly, O., The Wake Potentials from the Fields on 
the Cavity Boundary, Part. Acc., Vol. 36, 1991, p.15 

[7] Yokoya, K.,  Impedance of Slowly Tapered Structures, 
Tech. Rep. SL/90-88 (AP), CERN, 1990. 

10 100

1e-4

1e-3

0.01

0.1

1

h
σ

δ

( )O h

2( )O h

staircase

conformal

10 100

1e-4

0.01

1

h
σ

δ

( )O h

2( )O h

staircase

conformal

r

z

r

z
10 100

1e-4

1e-3

0.01

0.1

1

h
σ

δ

( )O h

2( )O h

staircase

conformal

10 100

1e-4

0.01

1

h
σ

δ

( )O h

2( )O h

staircase

conformal

r

z

r

z

r

z

r

z

δ

1 10 100

0.01

0.1

1

h
σ

( )O h

2( )O h

staircase

conformal

38 m m

z

r

1.9 m m
335 m rad

1e-3

1e-4

1e-5

δ

1 10 100

0.01

0.1

1

h
σ

( )O h

2( )O h

staircase

conformal

38 m m

z

r

1.9 m m
335 m rad

1e-3

1e-4

1e-5

-5 0 5-6

-4

-2

0

2

4

6
V
pC

z
σ

analytical

/ 10hσ =

staircase

conform al
/ 5hσ =

/ 20hσ =
/ 5,10, 20hσ =

10mm
40mm

10mm

4900mm

z

r

-5 0 5-6

-4

-2

0

2

4

6
V
pC

z
σ

analytical

/ 10hσ =

staircase

conform al
/ 5hσ =

/ 20hσ =
/ 5,10, 20hσ =

10mm
40mm

10mm

4900mm

z

r

10mm
40mm

10mm

4900mm

z

r

z

r

Proceedings of EPAC 2002, Paris, France

1684


