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Abstract

In this paper some approaches to beam dynamics simu-
lation via parallel and distributed computing are discussed.
This approach is based on two modeling levels. On the
first level we find symbolic presentations both for a beam
propagator (using the matrix formalism for Lie transfor-
mations)and for particle beam description (using a set of
model distribution functions). On this level the LEGO-
technology is used. This allows creating special date bases
of LEGO-objects. On the second level we generate some
distributed simulation flows synchronized with each other.
For this purpose the natural parallel and distributed struc-
tures of the beam dynamics are used. The matrix formalism
presentation for the beam propagator (Lie transformation)
permits us to reduce numerical operations to routine matrix
algebra operations. This allows us to realize the numeri-
cal simulation process on a computer cluster or on a set of
computer clusters. A version of the prediction-correction
method is used for space-charge-dominated beam dynam-
ics.

1 INTRODUCTION

Although we have had undoubted advances of parallel
and distributed computer systems, such systems are not
widely adopted in accelerators physics. The main prob-
lem of such status is the emergency cost of supercomput-
ers. However modern computer cluster systems are more
cheaper and available compared with the supercomputers.
Available evidence suggests that clusters can come to more
applicable in computer modeling for beam physics prob-
lems. The major aim of this report is to discuss mathemati-
cal methods which are maximal adequate not only physical
models, but the modern soft- and hardware. For this pur-
pose a researcher should use a special representation for
beam dynamics which is more congenial to cluster compu-
tations features. Usually there are several cluster systems
connected into a local computational net. In the Saint-
Petersburg State University (in the Petrodvoretz Campus)
there are six clusters consolidating more 6 processors. The
clusters each have 8 ÷ 12 processors. The basic concept
is that the whole problem is decomposed into several sub-
problems. Each of subproblems is computed on a cluster,
while the common results are computed with the help of
synchronization processes. These procedures of subprob-
lems synchronization can be realized in a different way de-
pending on concrete physical problem. It is obvious that
used mathematical models have to admit similar decompo-

sition naturally. All previous investigations [1]–[3] demon-
strated that the matrix formalism for Lie algebraic methods
give the best fit. We proceed from the knowledge that ma-
trix algebra is very adaptable for parallel and distributed
processing. In this reason it is a challenge to present beam
dynamics problems in the matrix terms. In this approach all
manipulated objects are two dimensional matrices. Usual
matrix operations are supplemented with extended by Kro-
necker product and sum operations.

In this paper we consider the decomposition procedure
based on the matrix representation for well known Lie al-
gebraic methods [4].

2 THE MATHEMATICAL
BACKGROUND

For an arbitrary dynamical system we can write

X = M(U; s|s0) ◦ X0, (1)

where X0, X are n-dimensional initial and current phase
vectors, M(U; s|s0) a map (a propagator) generated by the
dynamical system under study. Here U is a control vector
describing control parameters and functions. According to
the usual notations the motion equation can be written in
the form of ordinary differential equation for the propaga-
tor

dM(U; s|s0)
dt

= L(U; s) ◦M(U; s|s0), (2)

where L(U; s) is a Lie operator, U — the vector of control
functions, describing, for example, the external (control)
electromagnetic fields. In the arbitrary case the solution
of the Eq. (1) can be written in the form of so called time-
ordered presentation:

M(s|s0) = T exp




s∫

s0

LF(τ)dτ


 ,

Here T exp{·} is the time-ordered exponential operator.
Using the Magnus representation [5] for the map M one
can write

M(s|s0) = exp
(LG(s|s0)

)
,

where the new vector functionG can be evaluated using the
continuous analog of the Baker-Campbell-Hausdorff for-
mula. The operator equations (1), (2) are generated by the
system of ordinary differential equations (”motion equa-
tions”)

dX
ds

= F(E,B,X; s). (3)
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Following to previous papers [1]–[3] we present the force
function F(E,B, s) in the following series

F (E,B, s) =
∞∑

k=0

P
1k(E{k},B{k}, s)X [k],

where X[k] is the Kronecker power of k-th order of phase
vector X, E{k} = E{k}(s), B{k} = B{k}(s), are ex-
ternal field functional characteristics (for example, field
distribution along the reference orbit). The vector func-
tion E{k},B{k} are included to the control function vector
U(s). This expansion leads us to the following solution
form for particle motion equations:

X(s) =
∞∑

k=0

M
1k

(
E{k},B{k}, s

)
X[k]

0 ,

where X0 = X(s0) for some initial value of the phase
vector X and M

1k are aberration matrices of k-th order.
We must note that the matrix formalism allows to com-
puter these matrices in advance in a symbolic form (us-
ing, for example, computer algebra code Maple). Using
the Poincare–Witt

{
X[k]

} |k≥1 basis for the motion equa-
tion (1) one can write the following expansion

dX
dt

=
∞∑

k=0

P
1k(U; t)X[k]. (4)

For the corresponding propagator MF one can obtain the
following matrix presentation

MF(U; t|t0) ◦ X =
∞∑

k=0

M
1k(F,U; t|t0)X[k]. (5)

In the Eqs. (4) and (5) P
1k, M

1k are two dimensional matri-
ces (block-matrices): the matrices P

1k describe the source
dynamical system (for example, a beam line) in k-th or-
der and the matrices M

1k — the solution of the motion
equation (5). Here it should be note that an investigator
should truncate the series in the Eq. (5) for a some beam
line, depending on his knowledge or needs on acting non-
linear effects. Let N note the approximation order for sim-
ilar truncated series. It is known that after truncation pro-
cedure the effecting propagator losses its qualitative prop-
erties (for example, symplecticity). In the case of Hamil-
tonian formalism we apply the correction procedure [6].
In more general cases for this correction procedure we use
the knowledge of approximation symmetries and invariants
[7]. Similar restrictions have the form of linear algebraic
equations for the block-matrices M

1k, k ≤ N , which can
be solved in advanced using computer algebra codes (we
use Maple codes). This approach allows to guarantee con-
servation necessary properties for the truncated map up to
N -th order of approximation.

3 BEAM PHASE PORTRAIT
EVOLUTION

Practically all necessary information about beam evolu-
tion can be evaluated from phase portrait characteristics.

Here there are three approaches. The first is traditional
and based on point presentation of the phase manifold, oc-
cupied by beam particles or phase portrait of the dynami-
cal system (for example, for the well known Henon–Heiles
potential see the Fig. 1). The second uses the distribution
functions and the third — the beam boundary equation in
the form G(X, s) = 0. Last two approaches are consistent
with the matrix formalism and described in [3]. The last
approach is not consistent for space-charge problems, but
the two first can include the space-charge forces in the cor-
responding computational schemes. It should be noted that
in this case one has to use the analog of predictor-corrector
method [3]. For all description pictures we use the matrix
presentation of the propagator in the form (6).

Figure 1: The example of interface window for long time
evolution simulation.

4 THE COMPUTER PARALLEL FLOWS

It is known that the most used numerical methods are
parallelized with significant effort (see, for example, [9]–
[10]), while matrix algebra methods are parallelized natu-
rally. It is necessary note that all the operations for the ma-
trix formalism have parallel structure elementally. For ma-
trix operations one can talk about homogeneous operations,
which can be realized on computers separate entering into
a computational cluster. Basically here one can use general
parallel packages for linear algebra. Here one has to pay
attention to computer load as so all processors do roughly
the same amount of work the load balance issue and that
interprocessor communication does not seriously a affect
performance. As a result a researcher should pay attention
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to creation of optimal algorithms for parallel computers.
Standard libraries of MPI (Message Passing Interface) are
quite mature for these problems. But software challenges
remain particularly for computer systems such as clusters.

5 THE COMPUTER DISTRIBUTED
FLOWS

In order to ease and speed up the beam dynamics sim-
ulation we suggest to organize the computing in several
computational flows. Each flow correspond to particular
problems among the it is necessary to mention the follow-
ing: beam propagator evaluation, beam evolution (using
the phase portrait concept), space-charge forces comput-
ing and visualization procedure. Certainly the are another
computational flows, but they play auxiliary role. This sep-
aration into flows is based on two modeling levels. On
the first level we find symbolic presentations both for a
beam propagator (using the matrix formalism for Lie trans-
formations) and for particle beam description (using a set
of model distribution functions and/or boundary functions,
see, for example, [3]). On this level the LEGO-technology
is used (see [11]). This allows creating special date bases
of LEGO-objects. On the second level we generate some
distributed simulation flows synchronized with each other.
For this purpose the natural parallel and distributed struc-
tures of the beam dynamics are used. The matrix formalism
presentation for the beam propagator (the Lie transforma-
tion) permits us to reduce numerical operations to routine
matrix algebra operations. This allows us to realize the nu-
merical simulation process on a computer cluster or on a set
of computer clusters. The main difficulties are generated by
of synchronization problem for two flows: beam propaga-
tor flow and space-charge forces flow. Other types of com-
putational flows interchange by information more rarely
in comparison with the first two flows. For space-charge
beam dynamics we use a version of the special prediction-
correction method [3].

Figure 2: The example of interface window for beam line
design.

6 COMPUTER EXPERIMENTS

For beam numerical simulation described approach we
use special object-oriented codes which generated using
Fortran 90/High Performance Fortran and MPI codes (for
Linux platform). All symbolic computations were evalu-
ated using Maple codes. Usage of splitting on physical pro-
cesses MPI codes allow to organize calculation indepen-
dent (within the limits of the given temporary step) flows
simultaneously. Obtained parallel computer program com-
plex has property of a scalability, that leads to carry them
on computer systems with any arbitrary number of proces-
sors. The necessary number of processors is determined
for each particular problem. Besides MPI codes give the
code developers flexibility of combination of different pro-
gram units, organization of the necessary architecture of
the program complex. The program complex is tested on
the cluster system the Saint-Petersburg State University (in
the Petrodvoretz Campus). Primarily it was realized on
the cluster (eight Processors, Celeron 600 MGz, 256 Mb
RAM, Fast Ethernet 100 Mbit/sec) of the Applied Mathe-
matics & Control Processes Faculty. In the future this ap-
proach will be realized on the cluster system consists on
60 computers. In perspective we hope build a distributed
computer system total 100 ÷ 200 computers. Now a spe-
cial interface for distant admittance is created.

The special interfaces were created for solving differ-
ent problems (see examples such interface windows on the
Fig. 2). These interfaces give the designer the comfortable
possibility to manipulate by computer objects.
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