
A Fast 3D Multigrid Based Space–Charge Routine in the GPT Code

G. Pöplau�, U. van Rienen, Rostock University, Germany
S. B. van der Geer, Pulsar Physics, Soest, The Netherlands

M.J. de Loos, Eindhoven University of Technology, The Netherlands

Abstract

Fast calculation of 3D non–linear space–charge fields
is essential for the simulation of high–brightness charged
particle beams. We report on our development of a new
3D space–charge routine in the General Particle Tracer
(GPT) code. It scales linearly with the number of parti-
cles in terms of CPU time, allowing over a million parti-
cles to be tracked on a normal PC. The model is based on
a non–equidistant multigrid Poisson solver that is used to
solve the electrostatic fields in the rest frame of the bunch.
Bunch lengthening and emittance growth calculations in a
low–energy short electron bunch are chosen as an exam-
ple of non–linear space–charge effects in a high–brightness
photo–injector.

1 INTRODUCTION

Numerical prediction of charged particle dynamics in ac-
celerators is essential for the design and understanding of
these machines. Applications such as colliders and SASE–
FEL’s demand very high quality electron bunches, where
any anomaly severely degrades the final performance.

A powerful tool widely used for the study of the be-
haviour of charged beams is the General Particle Tracer
(GPT) [2]. It calculates the trajectories of a large num-
ber of sample–particles through the combined external and
self–induced fields generated by the charged particles (the
so–called space–charge forces). Depending on charge den-
sity and energy, a direct point–to–point model can not be
used to calculate space–charge forces because of granular-
ity problems and the inherent��� �� scaling between the
number of sample particles and CPU time [1].

A method to stabilize the calculations and to rigor-
ously save CPU time, for example as implemented in the
SCHEFF routine in PARMELA [4], is to restrict all calcu-
lations to 2D, calculate the fields on the edges of a mesh
and use interpolation to smooth the fields.

In this paper we introduce a 3D model for the fast cal-
culation of space–charge following the ideas in [7]. The
space–charge fields are computed in the rest frame by a
non–equidistant multigrid scheme. Hence, the numerical
effort scales linearly with the number of particles in terms
of CPU time. The new model is well suited for a variety
of applications, including the calculation of space–charge
fields in a high–brightness photo–injector, see Figure 1.
Important questions for the efficiency of the algorithm are

� supported by a research grant from DESY, Hamburg

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
x [mm]

-20

-10

0

10

20

E
le

ct
ric

x-
fie

ld
[M

V
/m

]

Figure 1: Color–density plot of the projection of the non–
linear transverse electric field of a 1 nC hard–edged bunch
with a radius of 1 mm and a length of 0.1 mm, as calculated
by the new 3D space–charge routine in GPT. The calcula-
tion is based on one million particles on a���� ���� ���
mesh.

the construction of the grid adapted to the particle distribu-
tion and the choice of a reliable multigrid scheme.

2 THE 3D SPACE–CHARGE MODEL

The space–charge fields have to be computed in each
time step of the numerical integration of the relativistic
equation of motion (in GPT a 5th order embedded Runge–
Kutta scheme with adaptive step size control is imple-
mented). The space–charge calculation is performed as fol-
lows:

1. Transformation of the particles from the laboratory
frame to the rest frame by Lorentz transformation.

2. Determination of a non–equidistant 3D Cartesian grid
in correspondence to the charge density of the bunch
(see subsection 2.1).

3. Approximation of the charge at the grid points.

4. Calculation of the electrostatic potential at the grid
points via Poisson’s equation applying a multigrid al-
gorithm. The finite difference scheme is used for
the discretization of Poisson’s equation (see subsec-
tion 2.2).

5. Derivation of the electric field in the rest frame and
trilinear interpolation of the field values to the particle
positions.

Proceedings of EPAC 2002, Paris, France

1658



6. Transformation of the field to the laboratory frame by
Lorentz transformation.

The efficiency and accuracy of the space–charge calcula-
tion mainly depends on the determination of the 3D mesh
and the applied multigrid scheme to solve Poisson’s equa-
tion. Both we describe in the next two subsections.

2.1 Mesh Generation

The electromagnetic potential is calculated on a 3D
Cartesian mesh where an approximation of the charge in
the rest frame is stored at the grid points. The 3D mesh is
generated in a cube surrounding the bunch. To reduce the
number of mesh lines needed, and thus to reduce CPU time,
the density of the mesh lines is increased if the charge–
density increases.

Figure 2: Mesh line positions ((�� �)–plane) for a Gaussian
charge density with�� � � (top) and�� � ��� (bottom).
The vertical axis shows the total charge in each mesh box,
where the height of the top has been normalized in both
plots.

The actual positioning of the mesh lines is an iterative
process. The mesh lines are distributed such that they are
spaced according to the distribution of the beam charge
density. The parameter�� is introduced to maintain a
maximum difference in spacing between neighboring mesh
lines, to avoid the creation of a non–optimal mesh line dis-
tribution for the Poisson solver. If, e. g.�� � ����, then
the difference in spacing between neighboring mesh lines
can not vary by more than���. To span the mesh over
the bounding box additional mesh lines are added left and
right of the bunch. The spacing of these additional mesh
lines is increased, restricted to��, to add as few lines as
possible. The addition of mesh lines and the effect of��

is shown in Figure 2. When�� � �, the spacing between

all neighboring mesh lines is allowed to vary by��, cre-
ating an equidistant mesh. Such a mesh is most stable for
the multigrid Poisson solver, but it will create many empty
mesh boxes. On the other extreme, setting�� � ��� re-
sults in a dense sampling of the electron bunch and sparse
sampling of the surrounding area.

2.2 The Multigrid Poisson Solver

After creating the mesh and approximating the charge of
the particles on the mesh points, the space–charge forces
can be calculated by means of Poisson’s equation. First,
Poisson’s equation is discretized by finite differences using
the non–equidistant mesh described in the previous section.
The solution of the resulting system of equations (with up
to 1 million degrees of freedom) requires a fast and robust
solver.

State-of-the-art is the application of a multigrid method
as Poisson solver [3]. In model cases the numerical ef-
fort scales with the number of mesh points. The multi-
grid algorithm operates on a certain number of grids start-
ing with the mesh given by the discretization of Poisson’s
equation. Then a sequence of coarser grids is generated by
cutting mesh lines. On an equidistant mesh every second
mesh line is removed. Now iteratively, a raw approxima-
tion of the solution of the systems of equations is obtained
by the application of a few steps of a relaxation scheme
(e. g. Gauss–Seidel). This approximation is then improved
by a correction vector obtained on the coarser grids (the
so–called coarse grid correction).

The coarsening strategy is crucial for the convergence
of the multigrid algorithm on non–equidistant grids [5, 6].
Here, the removal of mesh lines follows the rule: Two
neighboring steps�� and�� remain also in the next coarser
grid as long as either�� � ����� or �� � �����, where
���� denotes the overall minimal step size of the corre-
sponding fine level. The factor� is chosen as� � ��	 or
� � ��
 with the objective to obtain a decreasing aspect
ratio of the mesh spacing.

3 TRACKING EXAMPLE

During a drift, an electron bunch expands both longitudi-
nally and radially due to the space–charge forces. Figure 3
shows a simulation of a hard–edged bunch, starting with an
energy corresponding to a Lorentz factor of	 � �. The
bunch has a total charge of 1 nC, a radius of 1 mm and a
length of 0.1 mm (’pancake’ bunch). After 100 ps, the hard
edges have become smooth, and the density at the head of
the bunch is larger than at the tail due to relativistic effects.

The expansion calculated with the new 3D space–charge
routine has been compared to the expansion simulated with
the well–tested cylindrically symmetric 2D space–charge
routine of GPT [2]. The result for the bunch length is
shown in Figure 4. It demonstrates the perfect agreement
between the 2D and the 3D routine, even at 1000 particles.

Proceedings of EPAC 2002, Paris, France

1659



-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
z [mm]

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x
[m

m
]

29.20 29.25 29.30 29.35 29.40 29.45 29.50 29.55
z [mm]

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x
[m

m
]

Figure 3: Initial (top) and final (bottom) projections of
the charge density of an expanding ’pancake’ bunch in
the (�� 
)–plane. One million particles are used on a
	�� 	�� 	� mesh.

0

10

20

30

40

50

60

70

80

1 10 100 1,000 10,000 100,000 1,000,000

Number of particles

B
u
n
c
h
 l
e
n
g
th

 [
m

ic
ro

n
]

0

1

2

3

4

5

6

7

8

E
m

itta
n
c
e
 [π

 m
m

 m
ra

d
]

2D emittance

3D emittance

2D bunch length 3D bunch length

Figure 4: Bunch length (expressed as standard deviation)
and final emittance after tracking a ’pancake’ bunch with
total charge of 1 nC during 100 ps. Tracking a million par-
ticles with the 3D model takes only 30 minutes CPU time
on a 1.6 GHz Pentium PC.

Although the bunch length converges quite rapidly, the
emittance is harder to stabilize. As shown in Figure 4, well
over 10,000 particles are needed before the 3D routine con-
verges. The final value is identical to the 2D case, where
about a 1000 ’rings’ are sufficient. The very smooth con-
vergence curve indicates that there is potential for improve-

ment in the algorithm. It should be noted that this example
is a quite extreme case where the emittance explodes from
0 to about� � mm mrad in just 30 mm.

4 CONCLUSIONS

A new 3D space–charge routine implemented in the GPT
code has been described in this paper. The new method
allowing 3D simulations with a large number of particles
on a common PC is based on a multigrid Poisson solver
for the calculation of the electrostatic potential in the rest
frame. Numerical results of the 3D routine show perfect
agreement with the standard 2D space–charge model of the
GPT code.

 REFERENCES

[1] S.B. van der Geer, M.J. de Loos, “The General Particle Tracer
Code. Design, implementation and application”, PhD thesis,
Einhoven, 2001.

[2] General Particle Tracer (GPT), release 2.52, Pulsar Physics,
De Bongerd 23, Soest, The Netherlands.

[3] W. Hackbusch, “Multi-Grid Methods and Applications”,
Springer, Berlin, 1985.

[4] B.E.C. Koltenbah, C.G. Parazzoli, “Space Charge Cal-
culations of Elliptical Cross–Section Electron Pulses in
PARMELA”, Nucl. Instr. and Meth. in Phys. Res. A, Vol. 429,
1999, 281–286.

[5] G. Pöplau, U. van Rienen, J. Staats, T. Weiland, “Fast Algo-
rithms for the Tracking of Electron Beams”, Proceedings of
EPAC 2000, Vienna, 2000, 1387–1389.

[6] G. Pöplau, U. van Rienen, “Multigrid Solvers for Poisson’s
Equation in Computational Electromagnetics”, Proceedings
of the 3rd Conference on Scientific Computating in Electri-
cal Engineering (SCEE–2000), (U. van Rienen, D. Hecht, M.
Günther, eds.), LNSCE18, Springer, Berlin, 2001, 169–176.

[7] J. Staats, T. Weiland, S. Kostial, A. Richter, “Tracking of
Electron Beams with Numerically Determined Space Charge
Forces”, Proceedings of the 1999 Particle Accelerator Con-
ference PAC’99, New York, 1999, 2740–2742.

Proceedings of EPAC 2002, Paris, France

1660


