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Abstract
The study of the transit resistive wake field excitation

by relativistic electron beam in round pipe is given. Two
models have been considered: the transition of the round
pipe from perfectly to finite conducting walls and the
semi-infinite resistive pipe. In the first model, the excited
fields have been calculated by using the modal expansion
in frequency domain. The second model has been studied
based on the image charge representation technique.

1. INTRODUCTION
The radiation excited by the relativistic charged particle

in the infinite round pipe with finite conductivity wall
material is well understood and presented in number of
Refs. [1-6]. These results are successfully used for
evaluation of the resistive wakefield effects in
accelerators. However, for the very small bunch length
required for the SASE-FEL [7], the transition effects can
play an essential role for the correct simulation of the
resistive wakefield effects. As an example, for the
TESLA-FEL [4] transfer line, a simple geometrical
consideration shows that for the bunch length of 25

mµ the transition length for steady state resistive wakes
can reach few hundred meters. This distance corresponds
to time interval when the scattered fields from the skin
depth of the surface reach the driving bunch.

The exact knowledge of the longitudinal resistive
wakes in transition regime results on the better
understanding of the particle-environment interaction, the
exact calculation of the induced energy spread as well as
can lead to better performance of the surrounding vacuum
chamber during the beam acceleration or transfer.

2 TRANSITION FROM INFINITE TO
FINITE CONDUCTIVITY IN ROUND PIPE

The ultrarelativistic point charge passing through
infinite round pipe along the z-axes of symmetry is
studied. The pipe walls are the perfectly conducting
material at z < 0, and has the finite conductivity at z > 0.
The pipe radius b is constant and the wall thickness is
infinity. The boundary between the two metallic walls is
in z = 0 plane. The charge passes from the pipe with

infinite conducting walls to the finite one in +→ 0z
direction. It is well known that in perfectly conducting
pipe, the field lines of the ultrarelativistic moving charge
are perpendicular to pipe surface and charge does not
radiate. For the finite conducting walls the self-fields of
the charge are delay, the charge is radiate and in steady
state regime the excited electromagnetic fields are
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Figure 1. The geometry of the problem

propagates in the pipe with the phase velocity small
below velocity of light. These two limiting case, the
perfect conducting pipe and steady state regime in finite
conducting pipe, are coupled by the transition part where
the re-arrangement of charge fields take place that
accompany by the transition radiation.

The solution for the transition radiation is presented in
terms of the modal expansion.

The charge field components in the pipe (0 < r < b)
with perfectly conducting walls (z < 0) are given by
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with the wave number k=ω/c.
The charge field in the pipe ( br ≤≤0 ) with the wall

finite conductivity ( )0>z  is given by [1]
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As follow from the expressions (1) and (2), the charge
field gets the breakage at the entering into the transition
between two parts of pipe. The fields that radiated in the
transition part should match these fields. The transition
radiation fields in the both part of pipe are presented in
modal form. The free (without charge) field components
in the round pipe (for br ≤≤0 ) can be written as:_________________________________________
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with u±
n=j±

0,n/b, k2

+=k2-jµωσc, p±
n=(k±

2-(j±
0,n/b)2)1/2. The

values j-

0.n =j0,n are the roots of the zero order Bessel
function and correspond to perfect conducting pipe, while
j+

0.n to finite conducting pipe and are given by the
equation:
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The index (+) indicates the waves propagating in
forward direction, while (-) in opposite one.  The
coefficients A±

n are given by the matching of field
components Er, Ez and Hθ at z = 0 cross section inside the
pipe (for 0 < r < b)). Using the orthogonality of the
Bessel functions J0(u

-

nr) = J0(j0,nr) one obtain two linearly
independent equations:
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The linear combination of equations (6) results on the
infinite system of linear equations for the coefficients A+

n:
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This system is typical for the closed electrodynamic
problems and is solved exactly by the methods of direct
reversion [8]:
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The uniform convergence of the infinity product in (8)
follows from the asymptotic form of solution given by eq.
(5), which in the case of |κ|3/2/j20,k << 1 (κ = ks0 -

dimensionless wave number, 31
0

2
0 )2( ccbs σε= -

characteristic size of pipe) can be written as

( ) kkk jjsignjj ,0
23

,0,0 2)( κκ −+=+ (9)

In the low frequency range ( )2
1,0

23 j<<κ  the solution

(8) may be presented as
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This asymptotic solution is applicable to the bunches
with comparatively large rms length. As an example, for
Gaussian bunch rms length σz =1cm and pipe radius
b =10cm, the maximal value of κ  is equal to 0.05.
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Figure 2. Longitudinal electrical component of the bunch
field in the pipe with the finite conducting walls during
(left) and after (right) passing the transition at z=0. Dotted
curve presents the same value for the infinity pipe with
finite conducting walls.

Fig.2 shows the longitudinal electric field at the bunch
center during and after the bunch passing the transition at
location z=0. The bunch rms length is 1cm, the tube
radius 10cm. As it follows, the substantial radiation
behind the bunch arises when the considerable number of
bunch particle was passed through the transition aperture.
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Figure 3. Longitudinal wake potential at the bunch center
before 0<z and after 0>z  passing the transition. Dotted
curve presents the same value for the infinity pipe with
finite conducting walls.

The longitudinal wake potential at the bunch center is
presented in Fig.3.The wake potential is given
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3 TRANSITION RADIATION WITH
FINITE CONDUCTIVITY

Charged particle transition radiation through infinite
perfectly conducting plane into the semi-infinite round
pipe with finite conducting walls is considered (Fig.4).
The point charge moves along the z-axes of symmetry.

q

moving charge

FINITE CONDUCTING
W ALL

z

Perfectly 
conducting 
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Figure 4. The geometry of the problem

The electromagnetic field in the waveguide after
entering the particle consists of the sum of charge field in

infinite waveguide with finite conducting walls 2qE
�

given
by form. (2) and field excited at the crossing point rE

�

.
From the boundary condition at z=0 plane
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Maxwell equations zjk
z

r
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r
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longitudinal component of the electrical field on the axe
of the waveguide may be written as:
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where [5]
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and ( )zξ  is a complex error function.

The field experienced by the driving charge ( czt = ) is
given by

( ) ( ) ( )020, szffcztzEz +== (14)

Note, that at the transition point the retarding electric
field is twice as large as the retarding field of the point
charge in finite conducting pipe for steady state regime.
The longitudinal field component experienced by charge
(retarding potential) as it moves along the z-direction is
given in fig.4.  The second term in (14) decreases during
the particle motion and becomes equal to zero at ∞→z
(Fig.4).  In limiting case for large z the solution well
agreed with the solution for the infinitely resistive pipe.
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Figure 5. The point charge transition radiation
longitudinal field component in semi-infinite waveguide
with the finite conducting walls. Dotted curve presents the
same value for infinity pipe with finite conducting walls.

4 CONCLUSION
The transition radiation of the particles in a finite

conducting pipe has been studied. The two models have
been considered: the transition between perfectly
conducting and resistive pipes, the semi-infinite resistive
tube. In both case, the exact solutions for the induced
fields have been derived. The comparison of the
asymptotic behaviour of the induced fields with well-
known solutions in resistive pipe gives a good agreement.
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