
GdfidL ON CLUSTERS OF WORKSTATIONS

W. Bruns and H. B̈ussing, TU-Berlin, Berlin

Abstract

The electromagnetic field solver GdfidL has been ex-
tended to run efficiently on loosely coupled parallel sys-
tems, such as clusters of workstations. A computational
volume which is discretised using a regular grid can be
easily partitioned such that each processor has the same
number of gridcells. If for every gridcell the needed com-
putation is the same, such a partitioning is very efficient.
However, for typical accelerator components, most grid-
cells are filled with metal, therefore no fields need to be
computed in these cells. When such a geometry is paral-
lelised naively, the computational efficiency goes down to
about 10%, since most processors work on electrical con-
ducting cells. In that case, the problem is finding a par-
titioning such, that each processor gets the same number
of gridcells filled with vacuum. The paper describes the
implemented algorithms for partitioning the computational
volume and for computing the electromagnetic fields. The
total achieved computational efficiency is about 70%.

1 THE PROBLEM

The Finite Difference Method in cartesian coordinates is
easily parallelised, since the subdivision of the total rectan-
gular computational volume is easily done, if one restricts
oneself to rectangular subvolumes. One just has to partition
the grid such, that each processor has about the same num-
ber of gridcells. This approach works well, when electro-
magnetic fields can exist in a large fraction of the volume.

However, most realistic RF-devices, if computed in a
rectangular volume, do not lead to a grid where most grid-
cells are filled with vacuum or a dielectric. The opposite is
the case: Complicated devices, for which the computation
inherently is time consuming, have an enclosing rectangu-
lar box of which 90% or more is filled with electric con-
ducting material. If one subdivides such a volume into as
many subvolumes as there are processors, most processors
will work on parts of the volume where the fields are known
to be zero a priori. What a horrible waste of resources.

2 THE WAY OUT

Finite Element based codes do not have that problem.
Since they anyway have to deal with their complicated
mesh-topology, dealing with non-rectangular sub-volumes
is their daily bread. But if one wants to stick with the in-
herently easier implementation and cheaper execution of
classical Finite Differences, one has to stick to rectangular
subvolumes.

There is a way out: You won’t find in the ten command-
ments, that each processor is limited to working on a single

subvolume. If we subdivide the total volume in many more
subvolumes than we have processors, then we can discard
the subvolumes where no fields need to be computed, and
spread the remaining ones evenly over the available pro-
cessors. This approach is halfway between classical Finite
Difference and the complicated topology of Finite Element
Meshes.

For a first, typical example, in figure 1 we present a
model of the BESSY cavity.

Figure 1: Above: A model of the BESSY cavity with at-
tached waveguides and tuning plungers. The three large
damping waveguides are attached at the cavity at different
heights, therefore no symmetry plane is left. Because of
the large damping waveguides, most of the enclosing box
is filled with electric cells. In this case, less than 10% of the
computational volume is filled with vacuum cells. The total
number of grid cells used is about 16 millions. Below: The
same model with different colours, indicating the used sub-
volumes. The total volume is subdivided in 8x24=192 sub-
volumes, of which 122 can be discarded, since they do not
have a single vacuum cell. GdfidL needs about 3 GBytes of
RAM and six hours wall clock time on an eight processor
PC Cluster (total cost 8.000 EUR) to accurately compute
the first 120 resonant fields in that structure.

Proceedings of EPAC 2002, Paris, France

1619



3 THE IMPLEMENTATION

With this concept, the implementation is straightfor-
ward, however tedius.

3.1 Local field computation

The core of the Finite Difference Method is the discreti-
sation of the curl-operators. With these discretised curl op-
erators, one computes time dependent fields (FDTD) via
the discretised form of

�H(n∆t) = �H((n−1)∆t)−∆t
1
µ
∇× �E((n−1/2)∆t) (1)

�E((n + 1/2)∆t) = �E((n − 1/2)∆t) + ∆t
1
ε
∇× �H(n∆t)

(2)
and one finds resonant fields by searching for the eigenval-
ues of the discretised form of

1
ε
∇× 1

µ
∇× �E = ω2 �E (3)

Most of the CPU-time is spent in applying these discre-
tised curl operators. However, they are quite easily paral-
lelised. For example, when performing a FDTD calcula-
tion, the algorithm for a single subvolume per processor is:

For all Timesteps: DO
Compute local H by applying the local
curl operator to the local E
For all Directions: DO
Send tangential H to the neighbour
Receive tangential H from the neighbour

ENDDO For all Directions
Compute local E
For all Directions: DO
Send tangential E to the neighbour
Receive tangential E from the neighbour

ENDDO For all Directions
ENDDO For all Timesteps

The tangential H-components at the lower boundaries of
the local volumes must be sent to the neighbour volumes
in negative directions. Correspondingly, the tangential E-
components at the upper boundaries must be sent to the
neighbour volumes in positive directions. For correct re-
sults, the tangential components from a neighbour in eg.
x-direction must be received before data can be sent in eg.
y-direction.

However, if one wants to have only a single thread of ex-
ecution, the field update for more than one subvolume per
processor must be done slightly more complicated, since
otherwise deadlocks will occur:

For all Timesteps: DO
For all Subvolumes: DO
Compute local H by applying the local
curl operator to the local E

ENDDO For all Subvolumes

For all Subvolumes: DO
For all Directions: DO
Send tangential H to the neighbour
Receive tangential H from the neighbour

ENDDO For all Directions
ENDDO For all Subvolumes
For all Subvolumes: DO
Compute local E

ENDDO For all Subvolumes
For all Subvolumes: DO
For all Directions: DO
Send tangential E to the neighbour
Receive tangential E from the neighbour

ENDDO For all Directions
ENDDO For all Subvolumes

ENDDO For all Timesteps

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�������� ������ ������ ������ ������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�������

������������

������

������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������������������������������

������

������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������

Figure 2: The blue lines and circles represent the electric
field components in a local volume. The red ones repre-
sent the magnetic field components. The tangential E field
components at the upper boundaries of the local volume
(thick blue) and the tangential H field components at the
lower boundaries (thick red) can be computed from the lo-
cal information. These components are sent to the neigh-
bour volumes. The tangential E field at the lower bound-
aries (dashed blue) and the tangential H field at the upper
boundaries (dashed red) cannot be computed from the lo-
cal information. These components are received from the
neighbours.

3.2 Grid Generation

It is crucial that the grid generation is parallelised as
well, otherwise that step would be the most time consum-
ing part. The generation of the grid and the FD-coefficients
is made via two passes: In the first pass, each processor
gets assigned the same number of subvolumes to generate
the coefficients for. After that first pass, each subvolume is
inspected, how many gridcells can carry a nonzero field.
The subvolumes with only zero field are discarded, and

Proceedings of EPAC 2002, Paris, France

1620



the remaining ones are spread over the available proces-
sor such, that a: each processor has about the same number
of interesting grid-cells to deal with, and b: that the com-
munication between subvolumes on different processors is
minimised. This spreading over the available processors is
implemented via a call of the METIS[1] package. In the
second pass, each processor generates the mesh and the co-
efficients for the subvolumes which were assigned to him.

4 THE ACHIEVED EFFICIENCY

The parallelisation with many subvolumes is imple-
mented in GdfidL[2] for the computation of eigenvalues
with and without periodic boundary conditions, for the
computation of scattering parameter computations, and for
wakepotential computations. In all cases, lossy and/ or dis-
persive materials are allowed.

4.1 Definition of Efficiency

A cluster of N loosely coupled computers (with a cost of
N times more than 1 computer) has N times the memory,
and has N times the CPU power of a single computer. The
efficiency is the utilisation of these resources.

• Largest possible problem: If one can use grids with
(fRAM ×N) times more gridcells, before the RAM of
one of the computers is exhausted, one has a memory
efficiency offRAM .

• Faster execution: If one can compute a given problem
in a time which is smaller by a factor offCPU × N
than the time on a single computer, one has a CPU
efficiency offCPU .

For moderately large number of gridcells, say more than
1 Million per computer, both, the memory efficiency and
the CPU efficiency go up with the number of subvolumes,
since more subvolumes can be more evenly spread over the
processors. Since the subvolumes overlap slightly, the effi-
ciencies will eventually decrease for extremely many sub-
volumes. The CPU efficency additionally decreases for
many subvolumes, since the required communication is
proportional to the surface of the subvolumes. The mea-
sured efficiencies on a cluster of 8 processors, connected
via cheap 100 Mbit ethernet, are about 80% for the mem-
ory efficiency, and 70% for the CPU efficiency.

As a second example, figure 3 presents the model of the
Cornell cavity.

5 REFERENCES

[1] http://www-users.cs.umn.edu/∼karypis/metis/

[2] http://www.gdfidl.de

Figure 3: A model of the Cornell-Cavity, with attached
feeding waveguide and with absorbers at the circumfer-
ence of the beampipe. The total number of used subvol-
umes is 96, of which 52 can be discarded, since they are
fully filled with electric conducting material. A long range
wakepotential computation up to s=10 meters (three times
the structure length) in a grid of 140 million cells needs
about 1.7 GBytes of RAM and four hours of wall clock
time on an eight processor PC Cluster.

Proceedings of EPAC 2002, Paris, France

1621


