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Abstract

The understanding of the time evolution of particle dis-
tributions in accelerators is an important problem in beam
physics. In this contribution we study some numerical as-
pects related to this question. As a benchmark problem we
consider the beam echo in proton storage rings.

1 INTRODUCTION

A good understanding of the time evolution of particle
distributions in storage rings is an important problem in
beam physics, especially if one is interested in the influence
of noise in problems such as coasting beams (diffusion out
of stable rf-buckets) or echo-diffusion in proton machines.
The beam echo has been studied extensively by Stupakov et
al [1], [2], and we will consider it as a benchmark problem
for our numerical investigations.

2 THE MODEL

Echoes in particle beams are based on the sensitive link
between macroscopically measurable quantities (motion of
the centroid of the beam) and the microscopic (Hamilto-
nian) phase space dynamics of the particles. A simple
mathematical model, which can be solved analitycally was
given by Stupakov

ẋ = ω(J)p
ṗ = −ω(J)x. (1)

where the tune ω(J) is supposed to depend linearly on the
amplitude of the oscillations

ω(J) = ω0 + ω1J. J =
x2 + p2

2
.

The phase space flow reads

x = x0cos(ω(J)t) + p0sin(ω(J)t)
p = −x0sin(ω(J)t) + p0cos(ω(J)t). (2)

Assuming that the initial distribution function is subject to
a dipole kick d

ρ(x, p) =
1

2πσ2
e−

x2+(p−d)2

2σ2

and following the calculations of Stupakov and Kauffmann
it is possible to derive an analytical formula that describes

the evolution of the centroid < x > (first moment). Due
to the non linear character of this model < x > relaxes
towards zero in an exponential way. However, if we apply
a quadrupole kick q at time τ

x′ = x

p′ = p − qx (3)

even if the filamentation phenomenon smears out the dis-
tribution in the phase space the coherence of the phase dy-
namics induces an echo effect in the < x > value which
can be observed at time 2τ . When the quadrupole kick q
is small the phenomenon reveals a regular echo train sub-
sequent to the first echo signal at times t = 4τ, 6τ , etc.
In Fig. 1 and Fig 2 (left) we have calculated the centroid
motion applying the Liouville theorem backward in time

< x >=
∫ +∞

−∞
dp

∫ +∞

−∞
xρ(x−t(x0, p0), p−t(x0, p0))dx

for the parameters ω0 = 1.2885, ω1 = 0.186, q =
0.04, d = 1, σ = 0.2, τ = 200.

If one wants to study more realistic cases (longitudinal
echoes, transverse echoes with beam-beam interaction) and
if one wants to include the effects of noise one has to per-
form numerical studies.

One way is to study the stochastic dynamical system
directly. For example we have solved the equations for
the system (1) perturbed by an additive Gaussian white
(< ξ(t)ξ(t′) >= 2δ(t − t′)) noise

ẋ = ω(J)p

ṗ = −ω(J)x +
√

Dξ(t) (4)

using a symplectic integrator of the second order [3].
In Fig. 2 we have plotted the decay of the echo as a

function of the noise strenght for the parameters ω0 =
4.2885, ω1 = 2.186, q = 0.08, d = 1, τ = 20s.

An alternative way is to solve the corresponding Fokker-
Planck equation, a partial differential equation for the prob-
ability to find the system at time t between (x, x + dx) and
(p, p + dp). For the system (4) it reads

∂ρ

∂t
= −p

∂

∂x
ω(J)ρ + x

∂

∂p
ω(J)ρ + D

∂2ρ

∂p2

Due to the sensitive dependence of the first moment on the
microscopic dynamics (filamentation in phase space, see
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Figure 1: Left: initial distribution. Right: distribution at time τ .
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Figure 2: Left: time evolution of < x >. Right: Max amplitude of < x > versus the diffusion D.

Fig. 1) one can expect that the numerics is highly non triv-
ial. The reliability of ordinary numerical schemes has to be
checked very carefully by comparision with multiparticle
simulations or by comparing the noiseless (Liouville) case
with the exact solutions.

Numerical schemes based on finite difference methods
and operator splitting tecnhiques have been described in
[4] and [5]. In Fig. 3, 4, 5 we show some results which
were obtained with these schemes in the deterministic
(noiseless limit) case using a cartesian coordinate system.
The code developed in [4] is not able to reproduce the echo
while the code developed in [5] gives an accurate value
for the echo, although the error in the distribution is quite
large (see Fig. 4). From the properties of the determinis-
tic dynamics one can understand that a numerical scheme
must pay attention to the fine structure of the distribution
in the radial direction (in the angular direction the distribu-
tion translates rigidly). The method developed in [5] gives
very good results (see Fig 4), when one uses a grid of polar
coordinates with

∆r = 0.006, ∆θ =
2π

400
.

3 CONCLUSIONS

The Fokker-Planck equation is an important tool to study
the time evolution of the particle density in accelerators, es-

pecially if one wants to investigate the dynamics of the tails
in the distribution. Accurate and reliable solvers are needed
to solve Hamiltonian systems plus weak noise. The beam
echo, used as a benchmark problem in this contribution,
demonstrates the problems one can have with numerical
solvers: the finite grid structure and the used interpolation
procedure can easily smear out the dynamics in such a way
that the echo disappears. So some care has to be taken,
when one applies the Fokker-Planck approach to Hamilto-
nian problems plus weak noise. Multigrid schemes, or co-
ordinate systems, which are better adjusted to the dynamics
could be developed. Progress in this direction is underway.
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Figure 3: Left: evolution of < x > with the scheme developed in [4] in cartesian coordinates for ω 0 = 4, ω1 = 2, q =
0.08, d = 1, τ = 10s, ∆t = 0.0005, ∆x = 0.006. Right: evolution of < x > with the scheme developed in [5] in
cartesian coordinates for ω0 = 1, ω1 = 0.5, q = 0.08, d = 1, τ = 40s, ∆t = 0.01, ∆x = 0.006.
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Figure 4: Comparison beetween the scheme developed in [5] and the exact solution in cartesian coordinates at t = 81s .
ω0 = 1, ω1 = 0.5, q = 0.08, d = 1, τ = 40s, ∆t = 0.01, ∆x = 0.006.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.6 0.8 1 1.2 1.4 1.6

F
(0

,p
)

p

exact
numerical

Figure 5: Comparison beetween the scheme developed in [5] and the exact solution in polar coordinates at t = 79s.
ω0 = 1, ω1 = 0.5, q = 0.08, d = 1, τ = 40s, ∆t = 0.01, ∆r = 0.003, ∆θ = 2π
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