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Abstract

Using results for the CSR wake in a short magnet [1] we
obtain expressions for the wake in the limit of very large
values of the relativistic factorγ, γ → ∞, for both the en-
trance and exit of the magnet. The analytical results are il-
lustrated with numerical computation of the wakes, energy
loss and energy spread for magnets of different lengths.

1 INTRODUCTION

When an electron moves in a bending magnet it emits
synchrotron radiation and generates a wakefield that effects
other electrons in the beam. This wake is usually called
a Coherent Synchrotron Radiation (CSR) wake and for a
steady state case it has been computed in Refs. [2, 3].

In practice, bending magnets are often not long enough
to assume that the wake is in the steady state. In the case
when the formation length for the radiation is comparable
or larger than the magnet length the transient effects asso-
ciated with the entrance to and exit from the magnet should
be taken into account. The analysis of such wake for large,
but finite, values of the relativistic factorγ has been carried
out in Ref. [1]. The results of this paper can be used in
computation for moderate values ofγ ∼ 10 − 102, how-
ever, for very largeγ, calculations involve extremely small
spatial scale∼ R/γ3, whereR is the bending radius. In
many cases, whenγ ∼ 103, such scale cannot be resolved
numerically and the algorithm fails. For such large values
of γ a good approximation for the wake would be the limit
γ → ∞. One such formula is given in Ref. [1], but only
for the wake at the entrance to the magnet.

2 CALCULATION OF THE WAKE

Following Ref. [1] we will consider four different cases
of location of the observation pointP and the position of
the particle at the retarded timeP ′ when the radiation was
emitted. These are the cases A, B, C, and D shown in Fig. 3
of the cited paper. In case A,P is located inside the magnet
andP ′ is in front of the magnet at the straight part of the
orbit. In case B both points are inside the magnet, and in
case C they both are outside withP beyond, andP ′ before
the magnet. In case D,P is beyond andP ′ is inside the
magnet.

In what follows we will use the notation of Ref. [1].

2.1 Case A

The wake in this case is given by Eq. (30) of Ref. [1].
The observation point is located at angleφ measured from

the entrance to the magnet and the particle is located at dis-
tances−s′ from this point upstream. The retarded position
of the particle is at the distancey from the magnet entrance.
We will use dimensionlessy (y/R → y), keep only the
first term in the equation, assumey � φ, and neglect small
terms

w = − 4
R2

γ2y3 y + γ2φ3

(y2 + γ2φ4/4)3
. (1)

The minus sign of the wake corresponds to the positive lon-
gitudinal electric field and means that a particle gains en-
ergy. From this equation we see that the wake, as a func-
tion of y is localized aty ∼ γφ2, so we can further ne-
glect the first term in the numerator. The maximum ofw is
reached aty = γφ2/2, so we will introduce a new variable
ξ = y/γ. The equation that relatesξ to s − s′ is Eq. (31)
of Ref. [1] which we rewrite as

s− s′

R
=

1
2γ
ξ +

φ3

6

(
1 − 3

4
φ

γξ

)
, (2)

where we kept terms up to order ofγ−1 in the Taylor ex-
pansion. The terms withξ have a small factorγ−1 in front,
which means that large variation ofξ will result in small
changes ofs − s′. Hence, this wake is localized in the
vicinity (s − s′)/R ≈ φ3/6, and in the limitγ → ∞ can
be approximated by a delta-function

w ≈ Aδ

(
s− s′

R
− φ3

6

)
. (3)

To find the coefficientA, we need to integratew overs us-
ing the relationds/R = (dξ/2γ)(1+φ4/4ξ2) that follows
from Eq. (2)

A =
∫
wds = −2φ3

R

∫ ∞

0

ξ3(1 + φ4/4ξ2)
(ξ2 + φ4/4)3

dξ = − 4
Rφ

.

(4)
Calculation of the wakeW (s) =

∫
w(s − s′)λ(s′)ds′

for a bunch with a longitudinal distribution functionλ(s)
(
∫
λ(s)ds = 1) yields

W (s) = − 4
Rφ

λ

(
s− Rφ3

6

)
. (5)

Note that this wake has a large formation length propor-
tional toγ: lform ∼ yR ∼ γRφ2 ∼ γR(σz/R)2/3. If the
vacuum chamber leading to the magnet has metal elements
within this length, the resulting CSR wake can be modified
by the interaction with the metal.

2.2 Case B

In this case the wake coincides with the steady
state wake found in Refs. [2, 3],w(s − s′) =
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−2(3R2)−1/3∂(s− s′)−1/3/∂s′ . This expression is valid
for s− s′ < Rφ3/24, whereφ is the angle measured from
the beginning of the magnet to the observation point. Points
with s−s′ > Rφ3/24 correspond to Case A, with the wake
given by Eq. (3).

For the wake of a bunch, the contribution of the particles
that are in Case B is given by

W (s) =
4
Rφ

λ

(
s− Rφ3

24

)
(6)

+
2

(3R2)1/3

∫ s

s−Rφ3/24

1
(s− s′)1/3

∂λ(s′)
∂s′

ds′ ,

where we used integration by parts. Adding Eqs. (5) and
(6) gives the result that agrees with Eq. (87) of Ref. [1].

2.3 Case C

Consideration in case C follows closely the case A
above. We use dimensionlessx (x/R → x) wherex is
the distance from the observation point to the exit from the
magnet. We also keep only the first term in Eq. (34) of Ref.
[1], assumey � φm , x, and neglect small terms:

w = − 4
R2

γ2y3 γ2φ2
m(φm + 2x)

(y2 + γ2φ2
m(φm + 2x)2/4)3

. (7)

Introducingξ = y/γ we use Eq. (35) to relateξ to s − s ′,
again keeping terms up to order ofγ−1

s− s′

R
=

1
6
φ2

m(φm+3x)+
1
2γ
ξ− 1

8γξ
φ2

m(φm+2x)2 . (8)

In the limit γ → ∞, the wake can be approximated by the
delta function,

w ≈ Aδ

(
s− s′

R
− 1

6
φ2

m(φm + 3x)
)
. (9)

To find the coefficientA, we integratew overs, using the
relationds/R = (dξ/2γ)(1 + φ2

m(φm + 2x)2/4ξ2) that
follows from Eq. (8). This givesA = −4/(R(φm + 2x)).
For the wake a bunch we find

W (s) = − 4
R

1
(φm + 2x)

λ

(
s− R

6
φ2

m(φm + 3x)
)
.

(10)
In the limitx = 0, this equation reduces to Eq. (5) in which
φ = φm.

Note that this wake has about the same formation length
lform as in case A.

2.4 Case D

The wake in this case is given by Eqs. (36) and (37) of
Ref. [1]. In the limitγ → ∞, they take the form

w(s− s′) = − 32
R2

(ψ + x)2

ψ2(ψ + 2x)4
, (11)

whereψ is related tos− s′ through the equation

s− s′ =
Rψ3

24
ψ + 4x
ψ + x

. (12)

Here againx is a dimensionless distancex/R of the obser-
vation point, measured from the exit of the magnet. The
value ofψ should be smaller thanφm — the maximum
bending angle for the magnet, otherwise we are in the case
C. This sets a limit for the maximum value∆smax for the
differences− s′, which is defined by

∆smax =
Rφ3

m

24
φm + 4x
φm + x

. (13)

For values ofs− s′ > ∆smax one should use the results of
case C.

Note now that the wake Eq. (11) can be cast into the
following form

w(s − s′) = − 4
R

∂

∂s′
1

ψ + 2x
. (14)

This expression simplifies the wake for a bunch

W (s) =
4
R

[
λ(s− ∆smax)
φm + 2x

+
∫ s

s−∆smax

1
ψ + 2x

∂λ(s′)
∂s′

ds′
]
, (15)

where integration by parts has been used. It is easy to check
that if x = 0 (the observation point is at the exit from the
magnet) then the integral Eq. (15) reduces to Eq. (6), as
expected.

3 NUMERICAL EXAMPLES

The CSR wakefields for an arbitrary bunch distribution,
λ(s), are computed using a computer program which eval-
uates Eqs. (5), (6), (10), and (15) at progressive locations
along a particular beamline. A simple example with a gaus-
sian bunch passed through a single bend magnet followed
by a drift length is illustrated below.

3.1 A Single Bend Magnet and Drift Section

A gaussian bunch with energy 150 MeV, chargeq = 1
nC, and rms bunch lengthσs = 50 µm, is passed through a
bend withR = 1.5-m radius. Figure 1 shows the evolution
of the CSR wakefield (scaled by charge,q) from the start of
the 50-cm long bend magnet through to its end, depicting
cases A and B in Eqs. (5) and (6). The wakefield is plotted
atL = 2, 5, 10, 14, 18, and 50 cm past the entrance of the
magnet, which is chosen to allow immediate comparison
with Fig. 2 in Ref. [4]. The CSR wakefield progresses
through a transient regime at bend entrance and eventually
achieves a steady-state condition (labeled ”s-s” in the plot).
This steady-state condition is nearly achieved at a distance
from magnet entranceL0 = (24σsR

2)1/3 [4], which is
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14 cm in this example and referred to as the “overtaking
length”. Note that for purposes of illustration, and to allow
comparison with reference [4], the wakefields do not act
back on the bunch in this simple example.
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Figure 1: CSR entrance wakefield (times charge,q) at var-
ious distances past bend magnet entrance (”s-s” is steady-
state). Bunch head is at left (compare with Fig. 2 in refer-
ence [4]). Energy loss is at negative values here.

Figure 2 shows the continued evolution of the CSR
wakefield beyond the bend magnet exit, through a drift
section, depicting cases C and D in Eqs. (10) and (15).
The plot shows the wakefield for the same 50-µm gaussian
bunch at∆L = 0, 2, 5, 10, 20, and 50 cm past the exit face
of the bend magnet (compare to Fig. 3 in reference [4]).
The curve for∆L = 0 (blue) is the steady-state field and
is identical to the curve atL = 50 cm (”s-s”) in Fig. 1. In
this case, the wakefield retains its shape but the amplitude
drops as the bunch propagates past the exit of the bend.
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Figure 2: CSR exit wakefield at various distances (in cm)
from exit of 50-cm long bend magnet (compare to Fig. 3 in
reference [4]).

A second bend-exit case is also depicted in Fig. 3 where
the bend exit occurs well before steady-state conditions are
achieved. Here the bend magnet is set to 10-cm in length
with the sameR = 1.5-m radius and the same electron
bunch. The CSR wakefield develops as in Fig. 1 until the
pointL = 10 cm (third curve in Fig. 1). At this point the
bend magnet terminates and the CSR wakefield evolves as
shown in Fig. 3 (no comparable figure in [4]). The wake-

field is shown at∆L = 0, 2, 5, 10, 20, and 50 cm past the
exit face of the 10-cm long bend. In this transient-exit case,
the CSR wakefield is not constant in shape. The amplitude,
however, tapers off at a similar rate in Fig. 2.
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Figure 3: CSR exit wakefield at various distances (in cm)
from exit of 10-cm long bend magnet with R = 1.5 m. In
this case the bend-exit occurs before steady-state.

For the case with a 50-cm long magnet, the integrated
energy loss,〈∆E〉, and rms energy spread,〈(∆E −
〈∆E〉)2〉1/2, along the beamline are shown in Fig. 4, with
energy loss shown as a positive value. The overtaking
length,L0, is shown at 14 cm and the bend magnet exit
face is shown at 50 cm.
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Figure 4: Energy loss (blue),〈∆E〉, and rms energy spread
(red),〈(∆E − 〈∆E〉)2〉1/2, along 50-cm bend magnet and
its exit drift section. The diamonds are the locations corre-
sponding to the curves in Fig. 1, while the circles are the
locations corresponding to the curves in Fig. 2.
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