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Abstract

The Haissinski equation, accounting for the static distri-
bution of an electron beam circulating in a Storage-Ring
and subject to a purely inductive field has an analytical so-
lution, which is a specific form of the LambertW function.
We show how the use of this analytical tool allows a bet-
ter understanding of the validity of the numerical solutions
and the distribution normalization properties.

1 INTRODUCTION

The Haissinski equation [1] describes the stationary so-
lution for the longitudinal distribution of electrons in a stor-
age ring. The form of this equation depends on the form of
the wake field, which is given by the Fourier transform of
the storage ring impedance. The case of the purely induc-
tive impedance has been observed in storage rings like the
SLC damping rings [2] and at KEK [3].
Approximated solutions of the Haissinski equation have
been extensively investigated numerically [2]-[4]. We note
that an analytical solution of this equation exists. This so-
lution is given by a particular expression of the so-called
LambertW function [5], which appears frequently in ap-
plied mathematics and has important application in many
other fields [6]. In this paper we present the LambertW
function and analyze the nature of the analytical solution
of the Haissinski equation in the case of a purely inductive
impedance.

2 THE ANALYTICAL SOLUTION IN
THE PURE INDUCTIVE CASE

The Haissinski equation in the pure inductive case can
be writen in the form

ρ′ = − ξ

1 − Sρ
ρ, (1)

where ρ represents the beam distribution and the deriva-
tive is taken with respect to ξ, linked to the position zof the
electron with respect to the synchronous particle by

ξ =
ωs

αccσε
z, (2)

with ωs the synchrotron frequency, αc the momentum
compaction factor, c the speed of light, and σ ε the natural
energy spread of the beam.
The parameter S is specified in terms of the inductance L

of the wake field, the revolution period T0, the nominal
energy of the particles E0, the number of particles N , the
synchrotron frequency, the natural energy spread, and the
elementary charge e, as

|S| =
e2LNωs

α2
cσ

2
ε T0E0

. (3)

Equation (1) can be rewritten in the following more con-
venient form

ln(ρ) − Sρ = −ξ2

2
+ ln(A), (4)

where A is the normalization constant defined by

A = ln ρ0 − Sρ0. (5)

As mentioned above, equations of the type (1) have a
natural analytical solution in terms of the so-called Lam-
bertW function [5]. This function, W (z), is implicitly de-
fined as the root of the following equation

W (z) exp(W (z)) = z, (6)

and explicitly by the series expansion

W (z) =
∞∑

n=0

(−n)n−1

n!
zn, (7)

converging for |z| < 1
e .

The analytical solution of (1) using expressions (4) and (6)
is

ρ = −W (−AS exp(− ξ2

2 ))
S

. (8)

3 SINGULARITIES FOR NEGATIVE
MOMENTUM COMPACTION FACTOR

It is well known and evident that if S is negative, equa-
tion (1) has no singularity and there is always a unique con-
tinuous solution. Here we remark that the sign of S de-
pends on the opposite sign of the momentum compaction
factor αc. According to equation (7) the solution of equa-
tion (1) can be written as an infinite sum of Gaussians,
namely

ρ =
1
S

∞∑

n=1

nn−1

n!
(AS)n exp(−n

ξ2

2
). (9)
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In the case of positive S, negative αc, the solution exists,
but the presence of a singularity point limits the validity of
the solution to a restricted range of S-values. The conver-
gence of the series (8), see the previous section, depends on
the values of the constants A and S, fulfilling the inequality

AS ≤ 1
e
. (10)

The upper limit, associated with a branch point of the
LambertW function, clarifies the role of the singularity.
We can now exploit equation (8) to specify the normaliza-
tion of the distribution ρ, and the role of A and S.
It is evident that from equation (8) the normalized distribu-
tion is given by the value A, for a given S:

S =
∫ ∞

−∞
W (−SA exp(−ξ2

2
))

=
√

2π
∞∑

n=1

n
2n−3

2

n!
(AS)n.

(11)

The r.h.s of equation (11) is a series converging within
the same range imposed by (10).
By taking for AS the upper limit of convergence and by
using the Stirling approximation, n! � √

2πnnne−n, we
find the maximum value of S

S∗ �
∞∑

n=1

1
n2

=
π2

6
. (12)

This is a rough approximation and the exact computa-
tion (given by the computing algebra software Maple), even
though less appealing from the formal point of view, yields

S∗ � 1.550608..., (13)

which seems to be more accurate than previous values
given in the literature [8]. We also remark that the value
found in [9] is very close to S ∗.
It is important to emphasize that the distribution (8) ex-
hibits an r.m.s value below σξ < 1. In physical terms, this
means that an electron bunch experiencing a purely induc-
tive wake with S > 0, due to e.g. a negative momentum
compaction factor, may have a length lower than the ”nat-

ural” value, provided by σz =
cαc

ωs
σε.

The behavior of σξ as function of AS is given in figure 1
and the limiting value, calculated with the Stirling approx-
imation, but very close to the exact value, is

σ∗
ξ =

√√√√ 6
π2

∞∑

n=1

n−3 � 0.854846.... (14)

The results obtained so far, apart from providing an
analytical solution for equation (1) have clarified the nature
of the singularity associated with the limits of validity of
the Taylor expansion of the LambertW function and the
range of values of S (S < S∗) for which equation (1)
admits a normalizable solution.

Before concluding this section let us note that the solu-
tion (8) can be extended to negatives values of S too, pro-

vided that SA <
1
e

. An idea of the behavior of the solu-

tion, for AS → 1
e

and for AS → −1
e

, is given is figure 2.

As is evident, for positive ASvalues the distribution is sim-
ilar to a gaussian distribution with an r.m.s. value slightly
larger than the natural value. On the contrary for negative
ASvalues the shape is significantly different from a gaus-
sian shape.

4 LARGE CURRENT AND POSITIVE
MOMENTUM COMPACTION FACTOR

In the previous section we have explored the solution of
the Haissinski equation for a purely inductive wake using
the Taylor expansion of the LambertW function which has
a limited convergence radius. In this section we will see
how a different expansion, admitting a larger radius of con-
vergence, can be exploited to get a non trivial and useful
form of solution valid for negative S-values. To this aim
we note that, for the present problem, a natural alternative
to the Taylor expansion, is provided by

W (exp(z)) = 1 +
1
2
(z − 1) +

1
16

(z − 1)2

− 1
192

(z − 1)3 − 1
3072

(z − 1)4

+
13

61440
(z − 1)5 + O((z − 1)6)

,

(15)
whose radius of convergence is

√
4 + π2.

According to the previous relation we can write the solution
of (1) in the form (Λ = −S)

W (AΛ exp(−ξ2

2
)) = 1 +

1
2
(−ξ2/2 + ln

AΛ
e

)

+
1
16

(−ξ2/2 + ln
AΛ
e

)2

− 1
192

(−ξ2/2 + ln
AΛ
e

)3

− 1
3072

(−ξ2/2 + ln
AΛ
e

)4

+
13

61440
(−ξ2/2 + ln

AΛ
e

)5

+O((−ξ2/2 + ln
AΛ
e

)6)

.

(16)
The above solution shows that the charge distribution, in

the case of a perfect inductor is symmetric about ξ = 0 and
tends to a parabolic shape for AΛ � 1.
A comparison between analytical and numerical solution is
offered by figure 3 and the agreement is more than satisfac-
tory.
As a further comment we remark that the series converges
for AΛ ≤ 41.4, which is a good range for the specific prob-
lem we are considering.
It is also worth noting that it can be easily verified that the
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normalization constant can be directly inferred and reads
(δ = AΛ)

Ñ =
∫ ∞

−∞
ρ(ξdξ) � 3.1δ

1
3 , (17)

while the second order normalized momentum can be
written as

σ2
ξ =

1
Ñ

∫ ∞

−∞
ξ2ρ(ξ)dξ � 1.058(δ + 5)

1
6 . (18)

Therefore for large δ, and thus for large current, the r.m.s.
value of the distribution scales roughly as Ñ

1
4 .

5 CONCLUSION

The analytical solution of the Haissinski equation for a
purely inductive impedance, the LambertW function, has
been presented and the analysis confirmed previous numer-
ical studies. The behavior of the bunch distribution changes
its equilibrium shape according to the strength of the in-
ductance and the sign of the momentum compaction factor.
For a negative sign, the distribution is no more gaussian and
its standard deviation, the bunch length, is smaller than the
natural one. For a positive sign the distribution becomes
more quadratic for large inductance values.
The investigation of the general Haissinski equation, i.e.
for a general form of the impedance, and using the Lam-
bertW function, will be done at a later stage.
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Figure 1: The bunch length, σξ , as function of AS∗.
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Figure 2: The bunch distribution in the case AS � 1
e

(point) and in the case AS � − 1
e (line).
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Figure 3: Comparison between analytical and numerical
solution of the Haissinski equation.
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