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Abstract
This paper considers the resonant beam instability

induced by the periodic nature of external focusing force.
Firstly, an eigenvalue equation that determines the
frequencies of collective oscillation modes in a one-
dimensional beam is given by solving the Vlasov-Poisson
equations. Approximate formulae for the resonance
stopbands and growth rates are derived. It is shown that
the beam may become unstable when a coherent tune is
close to either an integer or a half integer. Secondly, a
general Hamiltonian formalism is constructed for the
study of two-dimensional space-charge-dominated beams
in circular accelerators. The theory suggests the
possibility of a novel collective resonance driven by
momentum dispersion and space charge. The particle-in-
cell simulation technique is employed to confirm the
existence of a “dispersive resonance” stopband.

1 RESONANT INSTABILITY IN A ONE-
DIMENSIONAL BEAM

In this section, we discuss the resonant instability of a
one-dimensional (1D) beam propagating through an
arbitrary periodic lattice [1].

1.1 Eigenvalue Equation
In order to evaluate the coherent tunes of a 1D beam,

we here assume the truncated waterbag distribution
defined by
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where J is the Courant-Snyder invariant including the
linear space-charge detuning, N is the number of particles
per unit length, and λ  is a constant corresponding to the
emittance of the beam. The perturbing distribution
function δf obeys the linearized Vlasov equation
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where q is the charge state of particles, Ksc is the beam
perveance, H0 is the unperturbed Hamiltonian of the beam
motion, and the perturbing space-charge potential δφ
satisfies the Poisson equation
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Applying the linear approximation to H0, we can solve
these coupled equations analytically; Equations (1)-(3)
are reduced to an eigenvalue problem [1]:
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The matrix elements are given by Mmn

kl =
( )k m m B Fx k mn x k mn+ + −ν δ δ νl l  where ν x is the space-

c h a r g e - d e p r e s s e d  i n c o h e r e n t  t une ,

F m n m nmn = − − − + −32 1 12 2/ [( ) ][( ) ] for m n+ =
even (otherwise, Fmn = 0), and all information about the

lattice design have been contained in the parameter Bk.
Denoting βx to be space-charge-modified betatron
function, we can define Bk as
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1.2 Resonance stopbands
Provided that the external focusing force is uniform

along the beam orbit, all the eigenvalues of Eq. (4) are
always real, which means that the beam is stable
regardless of its density. By contrast, the tunes of several
coherent modes can be imaginary in a strong focusing
channel where βx varies periodically. When the tune of
one mode m1 approaches that of another mode m2, the
system can be unstable. According to Eq. (4), such a
situation takes place in the range
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The approximate eigenvalues of a mth-order stable mode
can be calculated from the diagonal element of the matrix

Mmn

kl  :

ν ν= + +m B Fx m( ) integer .1 0                    (9)

Figure 1 shows an example tune diagram where a simple
FODO cell of 1m long with the filling factor of 0.5 has
been assumed. The phase advance at zero current has
been adjusted to be 108 degrees.

Proceedings of EPAC 2002, Paris, France

1383



1.0

0.8

0.6

0.4

0.2

0.0

R
e(
ν)

0.280.260.240.220.200.18

Depressed tune ν
x

14x10-3

12

10

8

6

4

2

0

Im
(ν

)

0.280.260.240.220.200.18

Depressed tune ν
x

Figure 1: Frequencies of coherent oscillation modes
calculated from the eigenvalue equation (4).

In many cases, severe instabilities are caused by the
coupling of m and −m modes. For instance, the largest
stopband located in the region around ν x ≈ 0 24.  in Fig. 1

is due to the interaction of m = ±2  modes. Putting
m m m1 2 0= − ≡ >( ) ,  Eq. (7) is simplified to

ν νc x mk k m B F= − −( ) /2 1 02 . The location of the mth-

order stopband is thus determined by the relation
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where the left hand side is identical to Eq. (9) except for
the integer offset. Note that there is a factor 2 in the
denominator of the right hand side. In past theories [2], a
resonance condition is derived by simply equating a
coherent tune to integer. Equation (10), however, says
that the mth-order resonance occurs not only when a
coherent tune is close to an integer but also when it is
near a half integer.

2 DISPERSIVE RESONANCE IN A TWO-
DIMENSIONAL CIRCULATING BEAM
Parametric resonances in coasting hadron beams are

studies in this section. In particular, we focus on a novel
resonance mechanism associated with momentum
dispersion and space charge [3].

2.1 Hamiltonian Formalism
The transverse spatial coordinates (x , y) of a single

particle in a circular machine can be separated into the
closed orbit distortion and betatron oscillation about it;

namely, x x D Wx
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where ( ˜, ˜ )x y  are the betatron coordinates, Dx

k( )  and Dy

k( )

are horizontal and vertical dispersion functions of kth
order, and W  represents the energy deviation from its
design value. Taking only quadrupole and horizontal
bending magnets into account, the betatron Hamiltonian
for a stationary coasting beam can be written as [3]
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where Kx and Ky are the horizontal and vertical focusing
functions, and the space-charge potential φ( , )x y  has
been expressed in the new coordinate variables:
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Gaussian charge density of elliptical symmetry, Eq. (11)
can be expanded as
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where ξmn’s are periodic functions depending on the beam
size.

Equation (12) indicates the possibility that nonlinear
resonances may be induced in circular machines by the
existence of momentum dispersion. It is also recognized,
from Eq. (12), that the nonlinear dispersion is
unimportant.

2.2 Simulation Results
In order to check out whether dispersive resonance

stopbands really exist, we here employ the tracking code
“SIMPSONS” [4]. This code enables one to simulate two-
or three-dimensional motion of charged particle beams
circulating in synchrotrons and storage rings. The PIC
algorithm is used to analyze Coulomb interactions among
macro particles. Space-charge forces are treated as
discrete kicks distributed all around the machine. The
scalar potential is calculated at each time step out of
10000 macro particles whose distribution evolves in a
self-consistent manner as time goes on.

Among a wide range of choices we take KEK Proton
Synchrotron (KEK PS) as a test lattice [5]. It has a 4-fold
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symmetry with 28 FODO cells in total. Each superperiod
is composed of 7 FODO cells, 5 of which contain two
bending magnets and the other 2 has one. The horizontal
and vertical betatron functions are quite regular all over
the machine. The design tunes are chosen slightly above 7
in both transverse directions. The betatron phase advance
per single FODO cell is thus a little more than 90 degrees.
Because of the superperiodicity of 4, there are no intrinsic
structure resonances (up to fourth order) near the
operating tunes except for the coupling resonances of
space-charge origin. Equation (12) indicates that there is

an intrinsic nonlinear coupling term proportional to ˜˜xy2 .
Following conventional understandings, such an odd-
order transverse coupling is not supposed to exist unless
the lattice contains a sextupole magnet or the beam has an
asymmetric distribution. Since neither sextupole magnets
nor field imperfections are introduced in our test lattice,
we can utilize the resonance line ν νx y− =2 integer  to

ascertain whether the effect of the dispersive term is
visible; we gradually increase the field gradient of
quadrupole magnets, letting the ring operating point cross
the line ν νx y− = −2 8. The starting operating point

(7.10, 7.75) is moved toward the final point (7.50, 7.70)
in 4000 turns. In what follows, the normalized root-mean-
squared (rms) emittances are initially set at
1.96πmm.mrad in the horizontal plane and
0.51πmm.mrad in the vertical plane.

First of all, we performed test simulation runs,
assuming 500 MeV proton beams with no momentum
spread. In this case, no instability occurred at least up to

the nominal intensity of 2 1012×  ppp. Another series of
simulations was also executed under the condition of zero
intensity but finite momentum spreads, and we again
observed no emittance growth. These results are regarded
as an evidence that there is no intrinsic x-y coupling along
the operation line considered here as long as the space-
charge potential is absent.

We now supply finite values to the beam intensity and
momentum spread simultaneously. A typical emittance
evolution is demonstrated in Fig. 2 where we have used

the intensity np = ×2 1012  ppp and 1σ momentum spread

σδp p/ .= 0 002 . A considerable emittance exchange takes

place only within a limited period when the operating
point is passing through the stopband of ν νx y− = −2 8.

In Fig. 3, we show how the final levels of the horizontal
and vertical emittances change with initial momentum
spread. The emittance transfer has become maximum at
around σδp p/ .= 0 002  in the present parameter setup.

Note that the relation 2 0∆ ∆ε εx y+ ≈ , where ∆ε x  and

∆ε y  are the amounts of the emittance variations in the

horizontal and vertical directions, has been approximately
satisfied. This strongly suggests that the instability was
caused by the coupling resonance of ν νx y− =2 integer .

Considering the fact that such an effect was invisible
either with no momentum spread or at zero current, the
driving term responsible for this resonance is essentially
related to both space-charge potential and dispersion.
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Figure 2: Time evolution of horizontal and vertical rms
emittances. We have assumed a 500 MeV proton beams

with np = ×2 1012  ppp and σδp p/ .= 0 002 .

2.0

1.5

1.0

0.5N
or

m
al

iz
ed

 r
m

s 
em

itt
an

ce
 [
π 

m
m

. m
ra

d]

6x10-3543210
1σ momentum spread ( σδp / p

 )

 Horizontal
 Vertical

Figure 3: Final rms emittance vs. momentum spread. The
values of horizontal and vertical emittances after the
operating point of the ring reached (7.50, 7.70) have been
plotted as a function of mometum spread. The nominal

beam intensity np = ×2 1012  ppp has been assumed.
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