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Abstract

A simulation study has predicted that during electron-
cooling bunching a beam meets the transverse instability
whose source is toroids of an electron-cooling device. We
propose a cure for the instability with skew quadrupole
magnets. We check in a multiparticle tracking simulation
if the cure is effective.

1 INTRODUCTION

The Radioisotope Beam Factory (RIBF) [1] will have
an electron-RI beam collider (e-RI Collider). In previous
works [2] , in a multiparticle tracking simulation we studied
ion-beam electron-cooling (EC) bunching to prepare the re-
quired ion beam at the e-RI collider, and predicted that the
beam meets the transverse instability whose source is the
toroids of the EC device and that the beam can be stabi-
lized using a transverse feedback of the bandwidth 6 GHz.

We make description about emittance behavior under the
resonance due to the toroids and resonance control using
skew quadrupole magnets (Q’s) in Section 2. We present
the simulation results to show how the resonance control is
effective for curing the instability in Section 3.

The simulation program has been improved so that the
longitudinal space-charge force is calculated using not only
the monopole longitudinal space-charge impedance but
also the dipole and the quadrupole one. Using 40,000
macroparticles, we simulate the EC bunching of238U92+

ion beams of 4 mA, or of 5.4×106 ions per bunch at 150
MeV/u.

2 RESONANCE

We describe the resonance due to toroid fields of an EC
device and the resonance control using skew Q’s.

2.1 Amplitude and Phase equation

For the case where the EC device is aligned horizontally,
the main component of the toroid field that ions experience
in the toroid section is the horizontal one which is inte-
grated along the longitudinal direction (ors axis) to be ap-
proximately [2]

B0xt(log rt − log xt) + B0x,

where the normal field isB0, the toroid radial center isxt

from thes axis, and the radius of the curvature of the out-
side inner wall isrt. The first term expresses the effect of
bending beams vertically and the second term the effect of
twisting the beams.

The bending effect can be lessened using steering mag-
nets. We try to curb the twisting effect using skew Q’s.
The amplitude and the phase equation are given as follows
when toroids and skew Q’s are treated as thin lenses;
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where the above equation description is based on the nor-
malized transverse phase spaces [3], the suffixi is for
toroids and skew Q’s,φx,y being an offsetΦx,y = Qx,yθ+
φx,y is the phase on the phase space, andx, y or y, x means
that it has to be x or y on the same side in respect to the
commas in an equation.

When we consider only main contribution in the above
differential equations to the slowly-varying terms or the
Qx+Qy = n resonance terms, the equations can be rewrit-
ten as
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Figure 1: Resonant invariant for the emittance-increasing
resonance due to the toroids in the initial condition that
εy ≤ 1 × 10−6 m×rad andQx + Qy = n.
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Φ = Φx + Φy − nθ.

2.2 Resonance due to the toroids

We consider the case where only the toroids work;
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From the above equations we derive the following resonant
invariants;

εx = C,

(Qx +Qy−n)εy− 1
2π

√
εxεyAeff

y tor cos(Φ+nθeff
y tor) = C.

The above equations show that the beam can be trapped
into theQx + Qy = n resonance, as shown in Fig. 1. The
type of the resonance is emittance-increasing one. The half
stopband width is defined as

√
εx/εyA

eff
y tor/4π.

2.3 Resonance control

θi
x is nearly equal toθi

y especially in the simulation
model where we use the simplified lattice that consists
of a constantly focusing section and a drift EC section.
Ay includes terms of toroids and skew Q’s, whileAx in-
cludes only terms of skew Q’s. If we makeAy zero us-
ing the skew Q’s,Ax becomesAeff

y tor. We never damp
down the resonance completely. We can, however, make
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Figure 2: Resonant invariant for the emittance-beating res-
onance controlled using skew Q’s in the initial condition
thatεx + εy = 2 × 10−6 m×rad andQx + Qy = n.

Ax = Ay ≈ Aeff
y tor/2 andnθeff

x − nθeff
y = π. In the

case, we derive
εx + εy = ε = C,

(Qx+Qy−n)εy− 1
2π

√
(ε − εy)εyAy cos(Φ+nθeff

y ) = C.

The above equations show that the beam can be trapped
into theQx + Qy = n resonance, as shown in Fig. 2. The
type of the resonance is emittance-beating one.

We expect that the instability during the bunching is
cured by changing the type of theQx + Qy = n res-
onance from the emittance-increasing type to emittance-
beating one using skew Q’s.

3 SIMULATION RESULTS

We show two kinds of simulation results without and
with the resonance control for comparison sake.

3.1 No resonance control

The evolution of the bunching is shown in Fig. 3. The
bunching process is as follows. First, a coasting beam is
cooled to the sixfold-rms momentum spread of5 × 10−4.
Then, the fundamental RF voltage is increased in such a
way that the momentum spread measured at the EC sec-
tion is maintained at5 × 10−4. The RF voltage increase
stops when the sixfold-rms bunch length reaches 1 m or
1/3 of the bunch spacing. When the momentum spread
reaches1.9×10−4 or most of the beam stays within 1m, the
third-harmonic RF voltage is increased while maintaining
the momentum spread.

The bunch length gets 260 (or 160) mm under the third-
harmonic RF voltage 82 (or 300) kV at 32 (or 50) ms.
The beam gets unstable transversely after 30 ms and is
lost because of hitting the chamber wall. The source of
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Figure 3: Evolution of the EC bunching without the reso-
nance control.

the instability is the toroids at the EC section that drive
theQx + Qy = 8 resonance with the half stopband width
∆(Qx + Qy) = 0.005, the bear tunes beingQx0 = 4.425
andQy0 = 3.725,

3.2 Resonance control

We use skew Q’s to realize the emittance-beating type
of the Qx + Qy = n = 8 resonance and the zero stop-
band width forQx − Qy = 0. We estimateθi

x andθi
y at

Qx +Qy = n on the assumption thatQx0 or Qy0 is shifted
to n/(Qx0 + Qy0) of it by the space-charge effects. In the
current simulation we do not take care of stopband widths
of the other resonances; after the resonance control, for ex-
ample, the width of the emittance-increasingQx −Qy = 1
resonance is 0.001. The evolution of the bunching is shown
in Fig. 4.

The bunch length gets 107 mm under the third harmonic
RF voltage 870 kV at 74 ms. The momentum spread starts
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Figure 4: Evolution of the EC bunching with the resonance
control.

to decrease at 61 ms, because the RF voltage-ramping rate
is decreased at the time. The beam gets unstable longitudi-
nally at 78 ms. The instability occurs around the same RF
voltage when the rate is not decreased, too.

4 CONCLUSIONS

It has been proved in the multiparticle tracking simu-
lation that the proposed cure for the transverse instability
during EC bunching is effective. The much-bunched beam
meets the longitudinal instability beyond the transverse in-
stability.
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