Proceedings of EPAC 2002, Paris, France

CURE FOR THE TRANSVERSE INSTABILITY DURING
ELECTRON-COOLING BUNCHING WITH SKEW QUADRUPOLE
MAGNETS

M. Takanaka, RIKEN, Japan

Abstract The bending effect can be lessened using steering mag-

A simulation study has predicted that during electronne'[S We try to curb the twisting effect using skew Q's.

cooling bunching a beam meets the transverse instabilit e amp".t“de and the ph’ase equation are glven as follows
hen toroids and skew Q s are treated as thin lenses;

whose source is toroids of an electron-cooling device.

) - . deg
propose a cure for t_he mstat_)lhty_wnh skeyv qu_adrup_ole DY _ —2Q, y% ” Zﬂz o by sin Py,
magnets. We check in a multiparticle tracking simulation do
if the cure is effective. d®, 1 y
20 :QM_QﬁeﬂZﬂﬁgﬂcos(bﬂ’
1 INTRODUCTION Ki ‘
The Radioisotope Beam Factory (RIBF) [1] will have oy = 0. 50 50— 05 y)y.x
an electron-RI beam collider (e-RI Collider). In previous o LeTEY
works [2] , in a multiparticle tracking simulation we studied Kzz;,_xlz 1 149 0_ o
ion-beam electron-cooling (EC) bunching to prepare there- Q0 o2 + Zcosn B )| v,
quired ion beam at the e-RlI collider, and predicted that the T
beam meets the transverse instability whose source is the T, Y = 1/ €xyBaey cos Py y,
toroids of the EC device and that the beam can be stabi- ) T T
lized using a transverse feedback of the bandwidth 6 GH_Zfor toroids i — i& Kill—0
We make description about emittance behavior under the v Tple’ v
resonance due to the toroids and resonance control using 8B ;
skew quadrupole magnets (Q's) in Section 2. We preseriP" Skew Q's Ki ji=02"
the simulation results to show how the resonance control is = ple
effective for curing the instability in Section 3. where the above equation description is based on the nor-

The simulation program has been improved so that thgalized transverse phase spaces [3], the suffix for
longitudinal space-charge force is calculated using not onlyroids and skew Q’sp.,. ., being an offse®,. , = Q.. 1,0 +
the monopole longitudinal space-charge impedance but, , is the phase on the phase space, angor y, © means
also the dipole and the quadrupole one. Using 40 00@iat it has to be X or y on the same side in respect to the
macroparticles, we simulate the EC bunching?8fU%?*  commas in an equation.

ion beams of 4 mA, or of 5410° ions per bunch at 150  When we consider only main contribution in the above

MeV/u. differential equations to the slowly-varying terms or the
2 RESONANCE Q.+Q, = nresonance terms, the equations can be rewrit-
ten as
We describe the resonance due to toroid fields of an ECd6
device and the resonance control using skew Q’s. d9 R =5 [€x€y Z BLBLK s1n(<I> + nGL )
2.1 Amplitude and Phase equation - \/@ Apysin(® + 051,

For the case where the EC device is aligned horizontal
the main component of the toroid field that ions experien ﬂ ~Q
in the toroid section is the horizontal one which is inte-df =
grated along the longitudinal direction (9&xis) to be ap-
proximately [2] =Q,

471- yTZ Je1a ;K;ml’cos(@—f—m?’ )

471- :yAm -y cos(® + nﬁefyf),

2
(Z,/ﬁ ﬁ’K?}wli cosn@ﬁ)
2

Z o1 ;K,’/m sinn@iil) ,

7

5&

Bozi(log r+ — log x+) + By,

where the normal field i, the toroid radial center is,
from thes axis, and the radius of the curvature of the out-
side inner wall is;. The first term expresses the effect of (

bending beams vertically and the second term the effect of
twisting the beams.
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Figure 1: Resonant invariant for the emittance-increasingigure 2: Resonant invariant for the emittance-beating res-
resonance due to the toroids in the initial condition thabnance controlled using skew Q’s in the initial condition

€y <1x 1075 mxrad andQ,, + Q, = n. thate, + ¢, = 2 x 1075 mxrad and@,, + Q, = n.
— i Ay = Ay ~ AL /2 andnbe! S — noc/t = 1. inthe
ungelf — 25\ BalBy Ky o' sinnby case, we derive
Ly A ’ €x+e,=e=C
Yy x Yy )
— _ 1
¢ =, + P, —nb. (Qx+Qy_n)gy_2—, /(e —€y)e, Ay cos(q>+n9§ff) =C.
™
2.2 Resonance due to the toroids The above equations show that the beam can be trapped

into the@, + @, = n resonance, as shown in Fig. 2. The

We consider the case where only the toroids work; ; X x
type of the resonance is emittance-beating one.

de, dd, We expect that the instability during the bunching is
a0 - Ao Qa, cured by changing the type of th@, + Q, = n res-
onance from the emittance-increasing type to emittance-
@ _ _LFAeff sin(® + nocts ) beating one using skew Q’s.
de 2T T+-Y<ty tor y tor/)»
dd 1 [€r orf orf
Dy g, -+ gAyft{W cos(® + nb<l ). 3 SIMULATION RESULTS

) ) ) We show two kinds of simulation results without and
From the above equations we derive the following resonagtiih the resonance control for comparison sake.
invariants;

€z = C,

1 eff eff y_
(Qa+ @y =n)ey = 5o v/Eby A ior cos(Dtny o) = C. The evolution of the bunching is shown in Fig. 3. The

The above equations show that the beam can be trappBdnching process is as follows. First, a coasting biam is
into the@, + Q, = n resonance, as shown in Fig. 1. Thecooled to the sixfold-rms momentum spreadsof 10"
type of the resonance is emittance-increasing one. The hdifién, the fundamental RF voltage is increased in such a

stopband width is defined MAZ%T/‘W- way that the momentum spread measured at the EC sec-
tion is maintained ab x 10~*. The RF voltage increase

stops when the sixfold-rms bunch length reaches 1 m or
_ ' 1/3 of the bunch spacing. When the momentum spread
¢, is nearly equal to9; especially in the simulation reached.9x 10~ or most of the beam stays within 1m, the
model where we use the simplified lattice that consistghird-harmonic RF voltage is increased while maintaining
of a constantly focusing section and a drift EC sectionthe momentum spread.
A, includes terms of toroids and skew Q's, whilg; in- The bunch length gets 260 (or 160) mm under the third-
cludes only terms of skew Q’s. If we maké, zero us- harmonic RF voltage 82 (or 300) kV at 32 (or 50) ms.
ing the skew Q's,A, becomesA<’S . We never damp The beam gets unstable transversely after 30 ms and is

y tor*
down the resonance completely. We can, however, makest because of hitting the chamber wall. The source of

3.1 No resonance control

2.3 Resonance control
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Figure 3: Evolution of the EC bunching without the reso-Figure 4: Evolution of the EC bunching with the resonance
nance control. control.

the instability is the toroids at the EC section that drivd0 decrease at 61 ms, because the RF voltage-ramping rate
the Q. + Q, = 8 resonance with the half stopband widthis decreased at the time. The beam gets unstable longitudi-

A(Q. + Q,) = 0.005, the bear tunes being .o = 4.425 nally at 78 ms. The instability occurs around the same RF
andQ,o = 3.725, voltage when the rate is not decreased, too.

3.2 Resonance control 4 CONCLUSIONS

We use skew Q’s to realize the emittance-beating type It has been proved in the multiparticle tracking simu-
of theQ, + @, = n = 8 resonance and the zero stop-lation that the proposed cure for the transverse instability
band width for@Q, — @, = 0. We estimat&; and¢, at during EC bunching is effective. The much-bunched beam
Qs+ Q, = n onthe assumption thé) o or Q, is shifted meets the longitudinal instability beyond the transverse in-
ton/(Q.0 + Qyo) Of it by the space-charge effects. In thestability.
current simulation we do not take care of stopband widths
of the other resonances; after the resonance control, for ex- 5 REFERENCES
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