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Abstract 
To calculate the longitudinal linear beam dynamics, the 

Panofsky equation which introduces the concept of 
transit time factor and average phase is widely used. The 
transit time factor is generally calculated under the 
assumption of a constant beta through the element. In the 
case of large beta variations or long and complex 
accelerating element, this approach can lead to some 
inaccuracies. To address this problem an analytic method 
taking into account the variation of the beta within the 
accelerating element has been developed. This method is 
applicable to any element by using decomposition of the 
electrical field into Fourier components. The average 
phase concept is adapted to the new formulation and the 
passage from the physical entrance phase to the average 
phase is clearly stated. The accuracy of the method is 
also presented through comparison with a slow and 
precise numerical approach. 

1 INTRODUCTION 
The desire to build cost effective accelerating 

structures favorises the emergence of high accelerating 
gradient and multi-gap cavities. As an example, the 
Spallation Neutron Source (SNS) will accelerate −H  
ions with only two different types of 6-cell elliptical 
superconducting radio frequency (SRF) cavities. For such 
structures, the longitudinal dynamics treatment must 
offer flexibility to accommodate with the high 
accelerating gradient, with the large phase slips induced 
by the difference between the beta of the particles and the 
geometric beta of the structure, and with the field 
asymmetry present in the end-cells due to the large bore 
radius of the cavities. This need in flexibility is combined 
to the need in accuracy and fast computation. In the 
pursuit of these three prerequisites a new set of 
longitudinal dynamics equations have been developed. In  
Sec. 2, the usual set of equations for the longitudinal 
dynamics are applied to a case with large beta-changing 
and some losses in the accuracy for the energy gain and 
time of flight calculations are illustrated. In Sec. 3, a 
more general and precise method for the longitudinal 
dynamics based on consecutive analytical iterations is 
developed. In Sec. 4 this method is applied to the 
previous case of large beta-variation to show the gain in 
the accuracy.  

2 APPROXIMATION OF BETA-
CONSTANT 

To treat the longitudinal dynamics of particles passing 
through an accelerating element, the beta of the particle 
is usually approximated constant. When the acceleration 
rate is small and the longitudinal field profile symmetric 
with respect to the geometric center, the element can 
efficiently be represented by drift spaces and thin gaps. 
For such a representation, a well-known set of equations 
has been derived [1] and constitutes a simple method to 
calculate the longitudinal dynamics. The basic thin gap 
transformation equations are 
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where W  and φ  designate the values of the kinetic 
energy and average phase of the particle, and the 
subscripts i  and f  refer to the initial and to the final 
values of these quantities, where q  is the electrical 
charge of the particle, 0V  is the voltage across the gap, k  
is the wave vector, )(kT  is the transit time factor and 

)(kT ′  its first derivative with respect to k .  
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Figure 1: Maximum energy gain in function of the 
entrance beta. The dark curve is obtained with a 
step by step numerical method, the light curve is 
obtained using Eq. (1). 

In the case of large variation of the beta and/or 
long and complex accelerating elements, the 
drift/thin-gap representation can lead to some loss 
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of accuracy. As an example, a 5-cell cavity of 
geometric beta equal to 0.5, operating in pi-mode 
with an ideal sinusoidal longitudinal electric field 
profile is considered. Computation of the 
longitudinal dynamics is performed for −H  ions 
using the set of Eq. (1) and using a 
straightforward step-by-step numerical method for 
reference. From Eq. (1), the quantity )(0 kTqV  
represents the maximum energy gain and this 
quantity is function of the entrance beta of the 
particle. In figure 1 the maximum energy gain 
profiles are plotted for both methods in the case of 
an extremely high accelerating gradient equal to 
40 MV/m. For such a case, a discrepancy in the 
results of both methods appears due to the large 
variation of the particle�s velocity within the 
element. 
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Figure 2: Difference in time of flight due to the 
variation of the beta. The dark curve is obtained from 
a step-by-step numerical method and the light curve 
from the set of Eq. (1) 

As for the energy gain, the time of flight calculated with 
the set of Eq. (1) can lead to some inaccuracies. The 
variation in the time of flight, caused by the variations of 
the particle�s velocity, are plotted for both methods in 
figure 2. As for the energy gain function, the loss in the 
accuracy is more pronounced when the variation of the 
beta inside the element is larger. To enhance the accuracy 
in the calculation of the longitudinal dynamics, other sets 
of equations have been derived from the basic treatment 
of Eq. (1). Some for example use numerical iterations [2] 
to find the value of the parameters at mid-gap. The 
benefit in the accuracy is nevertheless counter balanced 
by the complication of the method and the more 
expensive computation due to the introduction of 
numerical routines. 

3 LONGITUDINAL DYNAMICS 
INCLUDING THE BETA-VARYING 

EFFECT 
The energy gain and the phase for an on-axis particle 
passing from an initial location iz  to a location z  in the 
accelerating element are defined by the integrals 
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where E[s]  is the longitudinal electric field at the 
location s . When the variation of the particle�s beta is 
null, like in a drift space, the phase evolution written in 
Eq. (2) is linear, )z(zk][z[z] iziL i

−+= ϕϕ . A new phase 
variable can be defined as the difference of the total 
phase and its linear part, [z][z][z]∆ Lϕϕϕ −= . Since the 
variation of the beta within the accelerating element is 
usually a fraction of the entrance beta, it is of interest to 
develop the cosine term of Eq. (2) into a power series of 
the new phase variable [z]∆ϕ . Also, the variation of the 
wave vector k  can be related to the energy gain ∆W[z]  
by expansion in power series. With these considerations a 
new set of equations can be developed for the 
longitudinal dynamics. 
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Where ))( [z](cos L
m ϕ  refers the thm  derivative of the 

function )[z]cos(ϕ  with respect to [z]ϕ , evaluated for 
[z][z] Lϕϕ = , and where )(n

zi
k  refers to the thn  derivative 

of k  with respect to the particle energy, evaluated at the 
position iz . The first term of the first series in Eq. (3) is 
equal to )[z]cos( Lϕ  which corresponds to the case where 
the particle�s beta does not vary. To solve the system of 
Eq. (3), a method based on consecutive analytical 
iterations is applied. To perform such analytical 
iterations, an analytic representation of the longitudinal 
electric field is needed and is done by developing the 
field in a series of cosine functions. For the first 
analytical iteration the case of zero energy variation is 
taken. Injecting this result into the second expression of 
Eq. (3) leads to a null phase variation. This result is 
reentered in the first expression of Eq. (3) to obtain a new 
expression for the energy gain function. The process is 
repeated as pictured in figure 3. The results of the 
consecutive iterations are subscripted with different 
indexes. 
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Figure 3: Principle of the analytical iteration process. 
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The initial parameters for the set of Eq. (3) are the 
amplitudes of the field components, the longitudinal 
boundaries iz  and 

fz , the entrance energy of the particle 

iW  and the entrance phase of the particle ][ izϕ . Carrying 
the calculations it is possible to show that the expressions 
of the energy gain function and the total phase function 
can be expressed under the form 
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where the coefficients nnnn DCBA ,,,  depend on the  field 
amplitudes, on iz  and 

fz , and on 
iW  but not on the 

phase ][ziϕ . The set of Eq. (1) is an approximation of 
the more general set of Eq. (3) where the only term 
considered is the 1n =  term. The energy gain and the 
total phase are usually written as a function of an average 
phase Φ  instead of the entrance phase ][ziϕ . The 
concept of average phase can be adapted to the 
formulation of Eq. (3). If the entrance phase 
corresponding to the maximum of the energy gain 
function is written 

MAX∆Wi ])[z(ϕ , an average phase can be 
defined as 

MAX∆Wii ])[z(][zΦ ϕϕ −= . With this definition, 
the energy gain function reaches its maximum when 

0Φ = . The set of Eq. (3) can be rewritten as 
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with 1/22
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4 ILLUSTRATION OF THE METHOD 
In section 2 the example of a 5-cell cavity accelerating 
−H  with a gradient equal to 40 MV/m was chosen to 

show evidence of the beta-changing effect.  
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Figure 4: Maximum energy gain as a function of 
the entrance beta. The dark curve is obtained 

with a step by step numerical method, the light 
curve is obtained by using Eq. (3). 

The same example is reused for the expressions obtained 
from the set of Eq. (3). The results presented are obtained 
after three analytical iterations and show a net gain in 
accuracy compared to the previous longitudinal dynamic 
treatment. 
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Figure 5: Difference in time of flight due to the 
variation of the beta. The dark curve is obtained from 
a step-by-step numerical method and the light curve 
from the set of Eq. (3) 

5 CONCLUSION 
The developed set of equations allows accurate 
calculations of the longitudinal dynamics even when the 
variation of the beta within the accelerating element is 
large. It does not require any symmetry of the electrical 
field and pre-computation of the coefficients depending 
on the accelerating element and on the entrance beta 
insure fast computation for the treatment of a bunch of 
particles. In the SNS medium beta superconducting 
cavities, the beta-varying effect is less severe but the 
longitudinal field profile is non-symmetric in the end-
cells because of the large bore radius. The new method 
has been applied to this case and the accuracy is found to 
be excellent. 
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