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Abstract

Quadrupole gradient errors can be very accurately de-
termined by carefully analysing difference orbits and their
deviations from computer-model predictions. This method
was successfully applied in synchrotron radiation sources.
In order to allow easy before-hand estimates for the appli-
cation to other accelerators we determine scaling relations
for achievable accuracies as a function of BPM resolution
and used number of BPM and dipole correctors.

1 INTRODUCTION

In the recent years it has become popular to analyse
the linear optics – mostly of synchrotron radiation sources
[1, 2, 3, 4] – using response matrix data, i.e. analysing
a large number of difference orbits that are obtained by
changing a dipole orbit corrector magnet and observing the
beam’s position change on the BPMs. From the measured
response matrix the discrepancies between quadrupole gra-
dients seen by the beam and other hardware related quan-
tities and the corresponding computer-calculated quantities
can be determined to a high degree of accuracy.

It is of obvious interest to determine how well the re-
sponse matrix analysis method is applicable to other accel-
erators, which have BPMs with much lower resolution than
synchrotron radiation sources. Moreover the scaling prop-
erties with number of used BPM and correctors is relevant
for large machines in order to estimate the trade off when
using only a restricted number of BPM or correctors.

The method of response matrix analysis is based on com-
paring computer-calculated BPM-corrector response ele-
ments with measured ones

C̄ij = Cij +
∑

k

∂Cij

∂gk
δgk + Cij∆xi − Cij∆yj , (1)

where theC̄ij denotes the coefficients measured by ob-
serving difference orbits at BPMi generated by changing
dipole correctorj, and ∆x or ∆y are BPM and correc-
tor scale errors, respectively. The quantities we seek to
determine areδgk, the gradient- or other machine-errors
such as roll angle or longitudinal position of magnets or
BPMs. Cij are model predictions for the response coeffi-
cients which in simple cases can be calculated from

Cij =

√
βiβj

2 sinπν
cos(φi − φj − πν) (2)

whereφi andφj are the betatron phase at the BPM and
corrector, respectively. Equation 1 is a linear equation for

the unknown errors∆xi,∆yj , and ∆gk which normally
is vastly over-determined because we haveNbpm × Ncor

measured response coefficients per plane and only fit for
Nbpm + Ncor + Nquad parameters. In this report the ma-
trix that relates differences between measured and com-
puted response coefficients to the fit parameters will be
denoted byA. The system of equations can be solved in
the least squares sense [5]. The covariance matrix is given
by (AtA)−1 and the accuracies of the fitted parameters are
given by the square root of the diagonal elements of the
covariance matrix [5]. The finite resolution of each differ-
ence orbit measurement is taken into account by dividing
each row ofA by σ/θj , whereσ is the finite BPM resolu-
tion andθj is the deflection affected to the beam by a dipole
correctorj. In practice the latter is limited by aperture re-
strictions or non-linearities from sextupoles.

In this report we discuss the effect of random residual
errors on the accuracy to which fit parameters can be deter-
mined. Furthermore, we assume that all systematic errors
are taken care of by introducing suitable fit parameters. In
fact the whole point in doing a global fit to BPM and cor-
rector scales as well as quadrupole gradients and other ma-
chine imperfections is to remove these systematic errors in
a comprehensive way. The remaining random errors stem
from the finite BPM resolution are the subject of the re-
mainder of this paper.

2 BPM AND CORRECTOR ACCURACY

We will first consider the accuracy to which a single cor-
rector scale error can be determined. We assume that the
considered correctorj has a scale erroryj which is close to
unity. The change of position at BPMs throughout the ring
by a presumed corrector kickθj is given by

zi =

√
βiβj

2 sinπν
cos(φi − φj − πν)

θj

yj
(3)

where we have divided byyj to be consistent with the def-
inition of corrector scale error in eq. 1. Each response co-
efficientzj/θj is measured with finite accuracyσ/θj such
that we obtain the following fit equations




z1/θj

σ/θj
z2/θj

σ/θj

...



 =





√
β1βjθj

2σ sin πν cos(φ1 − φj − πν)√
β2βjθj

2σ sin πν cos(φ2 − φj − πν)
...




1
yj
.

(4)
Now it is easy to calculate the covariance matrix, because
the fitting matrixA (including the measurement errors) is
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just the column vector on the right hand side of eq. 4. Thus
we calculateAtA and get

AtA =

( √
βjθj

2σ sinπν

)2 ∑

BPM

βi cos2(φi − φj − πν) . (5)

The sum can be approximated byNbpmβ/2, whereβ is the
average beta function at places where the BPM are located.
The error bar for the inverse scale factor is then given by√

(AtA)−1. Note that, sinceyj is about unity the error bar
for yj and1/yj are the same. Moreover we can assume
that the correctors are located at places with similar beta
functions as the BPM and that all correctors are excited to
give the same kick angleθ. We then get for the accuracy to
which we can determine the corrector scale error

σ(y) = 2 sinπν
σ

βθ

√
2

Nbpm
≈ σ

βθ

1√
Nbpm

. (6)

Finally we note that fitting for many correctors simultane-
ously does not change the argument, because the difference
orbits are taken one at a time and the global fit is only done
in order to eliminate systematic errors. It does not affect
the random errors we are discussing.

Now we consider fitting for the scale error of a fixed
BPM from its response to kicks from many different cor-
rectors. This problem is the dual problem to the one dis-
cussed above as is also clear from eq. 1. Consequently sim-
ilar arguments apply and we arrive at the following scaling
relation for the BPM scale error accuracy

σ(x) ≈ σ

βθ

1√
Ncor

. (7)

Finally we observe that fitting for gradient errors simulta-
neously removes systematic errors but does not affect the
random errors to which the BPM or corrector scale errors
can be determined and equations 6 and 7 hold even when
fitting for everything at once.

Note that one global scale factor, the ratio between the
average corrector excitation and the average BPM response
can not be resolved using this method and the fitting matrix
is degenerate. The degeneracy can be resolved, however,
by using matrix inversion, based on the Singular Value De-
composition (SVD) Algorithm [5].

3 GRADIENT ACCURACY

We will now discuss the accuracy to which gradient or
other parameter-errors can be determined. We will use the
phase advanceψk in sectionk of the ring as a model pa-
rameter. It is related to integrated gradient errors∆K1L
by ∆ψk = β∆K1L/4π whereβ is the beta function at the
place of the gradient error. The relative change of response
coefficient is given by the derivative ofCij in eq. 2 with
respect to the phase error and the total change of response
coefficient is∂Cij/∂ψk ∆ψk. Both quantities are readily
calculated for a simple FODO model.

We now assume that all systematic BPM and correc-
tor scale errors are accounted for and consider a single
quadrupole with gradient error. We use all measured re-
sponse matrix data to determine its magnitude. The system
of equations we have to solve is given by

C̄ij − Cij

Σij
=
Aij

k ∆ψk

Σij
(8)

for each of theNbpm ×Ncor response matrix coefficients.
HereΣij is the error of a single response coefficient mea-
surement. It can be approximated by

Σij =
√
σ2/θ2 + (Cijσ(x))2 + (Cijσ(y))2 ≈ σ

θ
= Σ ,

(9)
whereσ(x) andσ(y) are given by eq. 6 and 7, respectively.
The approximate equality holds, because we haveC ≈ β
and inserting eq. 6 the contribution from the last term under
the root is smaller by1/

√
Nbpm compared to the first. The

same is true for the second term. The fitting matrixA is just
the column vector given by the derivatives∂Cij/∂ψk. Af-
ter some algebra we obtain for the inverse of the covariance
matrix in the FODO model

At

Σ
A

Σ
=
NbpmNcorβ

2

16Σ2 sin2 πν

1
2
(1 + cos2 πν) . (10)

We can simplify eq. 10 further by ignoring all other terms
of order unity and arrive at

σ(∆K1L) ≈ σ

β2θ

16π√
NbpmNcor

(11)

when fitting for a single quadrupole gradient error.
We now consider fitting for many quadrupole gradients

simultaneously. In that case(At/Σ)(A/Σ) from eq. 10 is
a symmetric matrix. If this matrix were diagonal we re-
covered eq. 10 for the accuracy of each quadrupole. There
are, however, correlations in the matrix which can be un-
derstood in the following way. Each column inA corre-
sponds to the variation of all response matrix elements to
a variation in the associated quadrupole gradient. The ma-
trix AtA is constructed by calculating the scalar products
of every column with all others. The diagonal elements
are generated when one column meets its transpose. The
off-diagonal elements, on the other hand, describe corre-
lations between gradients. Physically a large correlation
implies that gradient errors in corresponding quadrupoles
can not be resolved individually. InspectingAtA for a sim-
ple FODO model we observe that, upon normalization of
the diagonal elements to unity, the matrix roughly has the
following form





1 x x2 x3 . . .
x 1 x x2 . . .
x2 x 1 x . . .
x3 x2 x 1 . . .
...

...
...

...
. . .




. (12)
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Figure 1: Diagonal elements of the covariance matrix as a
function of the used number of BPM and correctors when
fitting for different numbers of quadrupoles.

Herex is the normalized correlation between nearby quad-
rupoles and is on the order of0.6 to 0.9. Of course this is
only a rough approximation. The detailed magnitude of the
correlation depends on the beam optical lattice, the chosen
quadrupoles, BPM, and correctors. For a rough scaling law,
however, it may suffice. Moreover, the normalization is
chosen in such a way, as to recover eq. 10 in the limit of
only a single fitted gradient.

The matrix in eq. 12 can be inverted to give the numerical
correction for the error bars of the fitted gradient errors.
One can easily verify that the covariance matrix, which is
the inverse of the matrix in eq. 12 is





b∗ a 0 0 . . .
a b a 0 . . .
0 a b a . . .
0 0 a b . . .
...

...
...

...
. ..




(13)

where the coefficientsa, b, b∗ are given by

a = − x

1 − x2
, b =

1 + x2

1 − x2
, b∗ =

1
1 − x2

. (14)

Thus we find that the error bars for the gradient scale errors
will typically be increased by a factor on the order of

√
b,

because the diagonal elements of the covariance matrix are
the squares of the error bars of the fitted parameters. Mak-
ing a conservative pessimistic assumption ofx = 0.9 we
find b = 9.526 and the error bars are increased by a factor
of about 3, yielding

σ(∆K1L) ≈ σ

β2θ

48π√
NbpmNcor

. (15)

We tested the derived relations with the simple FODO
model and show the diagonal elements of the covariance
matrix (At/ΣA/Σ)−1 as a function of BPM and correc-
tors involved in the fit forNbpm = Ncor in Fig. 1. The

top curve labelledBPM+COR shows the accuracy to which
the BPM and corrector scales can be fitted. There are three
curves superimposed coming from fitting BPM and correc-
tor alone, fitting for BPM, correctors, and 1 quadrupole and
the third from fitting BPM, correctors, and 10 quadrupoles.
They are rather close, justifying the statements made in sec-
tion 2 about the independence of fitting the BPM and COR
from the quadrupoles. The bottom curves show the accu-
racy to which the gradient errors can be found if one fits for
BPM, correctors and quadrupoles simultaneously, when us-
ing 1, 2, 5, or 10 quadrupoles in the fit. We clearly see that
the accuracy is about the same if two or more quadrupoles
are used in the fit.

4 HORIZONAL AND VERTICAL

Quadrupoles affect the focusing properties in horizon-
tal and vertical plane simultaneously. This makes fitting
horizontal and vertical response matrix elements advanta-
geous, because more measurement data are used to deter-
mine scale factors and gradient errors.

In a largely uncoupled machine the BPM and correc-
tor scale errors are mostly determined from in-plane data,
i.e. the response of horizontal (vertical) BPM to horizontal
(vertical) correctors. Thus the argument presented in sec-
tion 2 applies and the BPM or corrector scale errors are
given by eq. 6 and 7.

When determining the gradient errors the number of
BPM and corrector used in the fit will simply increase, and
eq. 15 needs to be modified by replacing

√
NbpmNcor by√

Nbpm,xNcor,x +Nbpm,yNcor,y when only in-plane data
are used.

The out-of-plane data, i.e. the response of a vertical
BPM to horizontal correctors, and vice-versa, yield infor-
mation about the skew quadrupole gradients and roll mis-
alignment of the quadrupoles, BPM, or correctors. These
parameters can be treated similar to gradient errors, except
theNbpm,xNcor,y + Nbpm,yNcor,x out-of-plane response
coefficients are used.
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