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Abstract the unknown errorsAz?, Ay’, and Ag, which normally
jQS_ vastly over-determined because we ha¥g,, < Ncor

uadrupole gradient errors can be very accurately d - '
Q po'e 9 y y easured response coefficients per plane and only fit for

termined by carefully analysing difference orbits and thei N N arameters. In this report the ma-
deviations from computer-model predictions. This methogl’>P™ + Neor + Nquad P S: IS rep

was successfully applied in synchrotron radiation source g(tetgarte;elgiz %gfg;ﬁggiz btitvtvr?:?itmze:zlr:;jerasn\?viI(I:ot::;—
In order to allow easy before-hand estimates for the appIP- b mp :
noted byA. The system of equations can be solved in

cation to other accelerators we determine scaling relatiorg‘g

for achievable accuracies as a function of BPM resolutiof'® Ietast fﬁuares sense [5]. The covariance matrix is given
and used number of BPM and dipole correctors y (A*A)~! and the accuracies of the fitted parameters are
' given by the square root of the diagonal elements of the

covariance matrix [5]. The finite resolution of each differ-
1 INTRODUCTION ence orbit measurement is taken into account by dividing

In the recent years it has become popular to analy§&ch row ofA by o/6;, whereo is the finite BPM resolu-
the linear optics — mostly of synchrotron radiation sourceon andd; is the deflection affected to the beam by a dipole
[1, 2, 3, 4] — using response matrix data, i.e. analysingorrector;. In practice the latter is limited by aperture re-
a large number of difference orbits that are obtained bStrictions or non-linearities from sextupoles.
changing a dipole orbit corrector magnet and observing the In this report we discuss the effect of random residual
beam’s position change on the BPMs. From the measur&§0rs on the accuracy to which fit parameters can be deter-
response matrix the discrepancies between quadrupole grf@'ned. Furthermore, we assume that all systematic errors
dients seen by the beam and other hardware related quahe taken care of by introducing suitable fit parameters. In
tities and the corresponding computer-calculated quantitiéact the whole point in doing a global fit to BPM and cor-
can be determined to a high degree of accuracy. rector scales as well as quadrupole gradients and other ma-
It is of obvious interest to determine how well the re-chine imperfections is to remove these systematic errors in
sponse matrix analysis method is applicable to other acc@-comprehensive way. The remaining random errors stem
erators, which have BPMs with much lower resolution thaffom the finite BPM resolution are the subject of the re-
synchrotron radiation sources. Moreover the scaling propoainder of this paper.
erties with number of used BPM and correctors is relevant
for large machines in order to estimate the trade off wher? BPM AND CORRECTOR ACCURACY
using only a restricted number of BPM or correctors. I . . .
The method of response matrix analysis is based on com—We will first consider the accuracy to which a single cor-

. ector scale error can be determined. We assume that the
paring computer-calculated BPM-corrector response el'%bnsidered correctgrhas a scale errqy; which is close to
ments with measured ones Y ;

unity. The change of position at BPMs throughout the ring

Ol — i 4 Z %C' Sgr + CiAZ — CIAgT . (1) by a presumed corrector kick is given by
9k
k -3 .
- b= L0 oo g - @)
where theC* denotes the coefficients measured by ob- 2sinmv Yj

serving difference orbits at BPNgenerated by changing \yhere we have divided by; to be consistent with the def-
dipole correctorj, and Az or Ay are BPM and correc- nition of corrector scale error in eq. 1. Each response co-
tor scale errors, respectively. The quantities we seek [gicient ; /9, is measured with finite accuraey/'6; such
determine arég;, the gradient- or other machine-errorsy, 4t we obtain the following fit equations

such as roll angle or longitudinal position of magnets or

BPMs. C% are model predictions for the response coeffi- / 2./% V/B15;6; . —
H ; H ; a/0; 20 sin v COS(¢1 ¢J ’/Tl/)
cients which in simple cases can be calculated from 22/0; B20;0;
o /0; = ooy, Cos(d2 — ¢j — ) y_ .
3. . . J
i = YO0 oy —m) @ : :
2sinwy 4)

where ¢; and ¢; are the betatron phase at the BPM andNow it is easy to calculate the covariance matrix, because
corrector, respectively. Equation 1 is a linear equation fahe fitting matrix A (including the measurement errors) is
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just the column vector on the right hand side of eq. 4. Thus We now assume that all systematic BPM and correc-
we calculated® A and get tor scale errors are accounted for and consider a single
) quadrupole with gradient error. We use all measured re-

R R /B;0; P sponse matrix data to determine its magnitude. The system
A"A = <—> D Bicos* (¢ — ¢ — ). (B) of equations we have to solve is given by

20 sin v
BPM

~ij ij ij
The sum can be approximated By, 3/2, wheres is the CY —CY _ Ay Ay )
average beta function at places where the BPM are located. D0 D

The error bar for the inverse scale factor is then given by, aach of theNpm % Neor FESpONse matrix coefficients.

v/ (A*A)~1. Note that, sincg; is about unity the error bar erexis is the error of a single response coefficient mea-
for y; and1/y; are the same. Moreover we can assumgrement. It can be approximated by

that the correctors are located at places with similar beta

functions as the BPM and that all correctors are excited tqQ., . - 5 - 5 O
1) — 2 2 19 17 ~
give the same kick angle We then get for the accuracy to B \/‘7 /02 +(Co(x))” + (Co(y)" ~ 5 =%,
which we can determine the corrector scale error _ (9)
wheres (z) ando (y) are given by eq. 6 and 7, respectively.

o o 2 o 1 The approximate equality holds, because we have
o(y) = 2sin ™50 Nopm B0 Nopm (6)  andinserting eq. 6 the contribution from the last term under
the root is smaller by / /Ny cOmpared to the first. The

Finally we note that fitting for many correctors simultanesame is true for the second term. The fitting matfits just
ously does not change the argument, because the differeride column vector given by the derivative€'™’ /01y, Af-
orbits are taken one at a time and the global fit is only dori€r some algebra we obtain for the inverse of the covariance
in order to eliminate systematic errors. It does not affegnatrix in the FODO model
the random errors we are discussing. ¢ 2

Now we consider fitting for the scale error of a fixed éé = Nbpf;#l(l + cos? ). (10)
BPM from its response to kicks from many different cor- LY 165%sin” v 2
rectors. This proplem is the dual problem to the one dls_*We can simplify eq. 10 further by ignoring all other terms
cussed above as is also clear from eq. 1. Consequently Sigi-order unity and arrive at
ilar arguments apply and we arrive at the following scaling

i 16

relation for the BPM scale error accuracy o(AK: L) m (11)

g
( ) p 1 (7) ﬁ29 kV4 NbpmNcor
o\r)~ — .
B8 v/ Neor when fitting for a single quadrupole gradient error.

Finally we observe that fitting for gradient errors simulta- We now consider fitting for many quadrupole gradients

. . .
neously removes systematic errors but does not affect tﬁémultaneously. In that cagel’/2)(4/X) from eq. 10 is

) a symmetric matrix. If this matrix were diagonal we re-
random errors to which the BPM or corrector scale errors

. : cavered eq. 10 for the accuracy of each quadrupole. There
can be determined and equations 6 and 7 hold even whén . . : .
" ) are, however, correlations in the matrix which can be un-
fitting for everything at once.

. derstood in the following way. Each column i corre-
Note that one global scale factor, the ratio between the . .
L sponds to the variation of all response matrix elements to

average corrector excitation and the average BPM response_ .. . .
. . i a variation in the associated quadrupole gradient. The ma-
can not be resolved using this method and the fitting matrix. = =~ .
. trix A'A is constructed by calculating the scalar products
is degenerate. The degeneracy can be resolved, however, ; .

X . : . of every column with all others. The diagonal elements
by using matrix inversion, based on the Singular Value Deére enerated when one column meets its transpose. The
composition (SVD) Algorithm [5]. 9 pose€.

off-diagonal elements, on the other hand, describe corre-

3 GRADIENT ACCURACY !atiops between gradients. .Physically a Igrge correlation

implies that gradient errors in corresponding quadrupoles

We will now discuss the accuracy to which gradient ocan not be resolved individually. InspectidgA for a sim-

other parameter-errors can be determined. We will use tiple FODO model we observe that, upon normalization of

phase advance; in sectionk of the ring as a model pa- the diagonal elements to unity, the matrix roughly has the

rameter. It is related to integrated gradient err&r&; . following form
by Ay, = BAK, L/4w wheref is the beta function at the

. . 1 2 g3
place of the gradient error. The relative change of response N ;f C; iQ
coefficient is given by the derivative @/ in eq. 2 with 2 o 1
respect to the phase error and the total change of response B2 a1 (12)

coefficient is0C* /9y, Ay, Both quantities are readily
calculated for a simple FODO model.
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0.20

top curve labelledPM+COR shows the accuracy to which
the BPM and corrector scales can be fitted. There are three
curves superimposed coming from fitting BPM and correc-
tor alone, fitting for BPM, correctors, and 1 quadrupole and
the third from fitting BPM, correctors, and 10 quadrupoles.
They are rather close, justifying the statements made in sec-
tion 2 about the independence of fitting the BPM and COR
from the quadrupoles. The bottom curves show the accu-
racy to which the gradient errors can be found if one fits for
BPM, correctors and quadrupoles simultaneously, when us-
ing 1, 2, 5, or 10 quadrupoles in the fit. We clearly see that

‘ ) the accuracy is about the same if two or more quadrupoles
10.0 20.0 30.0 40.0 are Used |n the flt

Nbpm=Ncor

BPM and COR

0.10

cinv(i,i) for BPM,COR,QUAD

2,5,10 Quads

Figure 1. Diagonal elements of the covariance matrixasa 4 HORIZONAL AND VERTICAL
function of the used number of BPM and correctors when

ﬁtting for different numbers of quadrup0|es_ Quadrupoles affect the focusing properties in horizon-
tal and vertical plane simultaneously. This makes fitting
horizontal and vertical response matrix elements advanta-
i ) i eous, because more measurement data are used to deter-
Herexz is the normalized correlation between nearby qua(ﬁ'qine scale factors and gradient errors.

rupoles and is on the order 6f6 to 0.9. Of course this is In a largely uncoupled machine the BPM and correc-
only arough approximation. The detailed magnitude of thg, sca1e errors are mostly determined from in-plane data,
correlation depends on the beam optical lattice, the_chosgg. the response of horizontal (vertical) BPM to horizontal
quadrupoles, BPM, and correctors. Forarough scaling laye tical) correctors. Thus the argument presented in sec-
however, it may suffice. Moreover, the normalization igjo 5 applies and the BPM or corrector scale errors are
chosen in suc_h a way, as to recover eq. 10 in the limit cﬁiven by eq. 6 and 7.
only a single fitted gradient. , _When determining the gradient errors the number of
The matrixin eq. 12 can be inverted to give the numericgip) anq corrector used in the fit wil simply increase, and

correction for the error bars of the _fitted grad_ient e_rror_seq. 15 needs to be modified by replaciy WbpmNcor by

One can easily verify that the covariance matrix, which is h v in-pl d

the inverse of the matrix in eq. 12 is \/Nbpma‘Ncor”‘ *+ Nopm,y Neor,y When only in-plane data
' are used.

The out-of-plane data, i.e. the response of a vertical

b* a 0 O
a b a 0 BPM to horizontal correctors, and vice-versa, yield infor-
0 a b a (13) mation about the skew quadrupole gradients and roll mis-
0 0 a b alignment of the quadrupoles, BPM, or correctors. These
parameters can be treated similar to gradient errors, except
the Nypm «Neor.y + Nopm,y Neor,x OUt-of-plane response
- . coefficients are used.
where the coefficients, b, b* are given by
x 1+ 22 . 1 5 REFERENCES
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