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Abstract 
The beam transport system for the Advanced Hydrotest 

Facility (AHF) anticipates multiple beam splitters. 
Monitoring two transversely separated beams in a 
common beam pipe in the splitter sections imposes certain 
requirements on beam diagnostics for these sections. We 
explore a two-beam system in a generic beam monitor and 
study the feasibility of resolving the transverse positions 
of the two beams with one diagnostics device. Effects of 
unequal currents in two beams and of finite transverse 
beam sizes are explored analytically for both the ultra 
relativistic case and in the long-wavelength limit. 

1 INTRODUCTION 
In the planned Advanced Hydrotest Facility (AHF) [1], 

20-ns beam pulses (bunches) will be extracted from the 
50-GeV main proton synchrotron and then transported to 
the target by an elaborated transport system. The beam 
transport system splits the beam bunches into two parts 
(beamlets) in its splitting sections, either with equal 
currents or in the ratio 2:1, so that up to 12 synchronous 
beam pulses of equal intensity can be delivered to the 
target for multi-axis proton radiography. Information 
about the transverse positions of the beams in the splitters 
should be delivered by some diagnostic devices. Possible 
candidates are wall current monitors or conventional 
stripline beam position monitors (BPMs). We need 
estimates on how well the transverse positions of the two 
beams can be resolved by these monitors.  

2 FIELDS AND BPM SIGNALS 
Let us make the following assumptions: (i) the vacuum 

chamber near the monitors is homogeneous along the 
chamber axis; (ii) its walls are perfectly conducting, and 

(iii) 2( / ) 1b cω βγ � , whereω is the frequency of interest 

and b is a typical transverse dimension of the chamber. 
Condition (iii) includes both the ultra relativistic limit and 
the long-wavelength limit, when the wavelength bλ � . 
For the AHF with 50-GeV protons and with b on the order 
of 10 cm, the condition (iii) is satisfied up to 10 GHz. The 
calculation of the beam transverse field on the chamber 
walls is then a 2-D electrostatic problem. This field can be 
treated as a sum of fields produced by thin (pencil) beams 
plus corrections due to finite transverse beam sizes. An 
arbitrary transverse distribution of the beam current in a 
chamber of a general cross section was studied in Ref. [2], 
where beam-size corrections to the BPM signals were 
calculated. In our case, the current distribution is just a 
sum of distributions of two separate beams, see Fig. 1. 
From the transverse electric field created by two beams at 
an arbitrary point on the chamber wall we find the 
induced wall currents, and hence, the BPM signals.  

An input beam in the AHF splitter sections is split in the 
horizontal plane initially by an electrostatic septum, and 
then two beamlets are further separated by one pulsed and 
two DC magnetic septa [1]. Separated beamlets in a 
splitter are illustrated in Fig. 1; the beam pipe has a 
circular cross section.   

 
Figure 1: Transverse cross section of the vacuum chamber 
(blue) and of two split beams (red) in AHF beam splitters.  

Let us assume that the centers of the charge transverse 
distributions ( , )i x yλ  in two beams, i=1,2, are located at 

ir
�

, and their currents have the ratio of k to (1-k), so that 

k=1/2 corresponds to two equal beams, each with unit 
charge per unit length. The transverse field created at a 

point b
�

on the wall of a circular pipe of radius b by a 
pencil beam with its axis displaced from the chamber axis 
by r

�
(or, equivalently, by an axisymmetric distribution of 

charge having the same axis, see in [2]) is well-known: 
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Due to linearity, for two pencil beams the resulting field is  

 1 2 1 2( , , ) 2 ( , ) 2(1 ) ( , ).E r r b ke r b k e r b= + −
� � �� � � �

 (2) 

Introducing the center of the two-beam charge distribution  

1 2(1 )a kr k r= + −� � �
, and the beam spacing 1 2d r r= −

� � �
, we 

can rewrite Eqs. (1-2) in terms of ,a d
��

. Since the induced 
wall currents are proportional to the field (2), integrating 
it within the BPM electrode azimuthal range gives us the 
BPM signal from the two pencil beams. Adding two sets 
of beam-size corrections as in Ref. [2] (one for each of 
two beams) produces the required results for BPM signals 
due to two beams. For practical purposes it is useful to 
derive simple expressions for BPM signals as functions of 
the beam positions and sizes. For simplicity, let us 
consider a stripline BPM with four narrow electrodes in 
the points R (b,0), T (0,b), L (-b,0), and B (0,-b) of Fig. 1. 
Accounting for a finite width of electrodes would lead to 
additional formfactors in equations for BPM signals, cf. in 
[2]; these formfactors tend to 1 for narrow electrodes. 
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2.1 BPM Signal Ratios: Small Beam Offsets 
If we choose 1b = , so that all transverse dimensions are 

in units of b, for the case of small beam displacements 
from the chamber axis – | |,| |,| |,| | 1x y x ya a d d � – one 

can expand the BPM signal ratios as follows: 
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where R,L,T,B are BPM signals on the corresponding 
electrodes, S R L T B= + + +  is a sum signal, and terms 

of the order 4( )O δ are omitted in expansions (3). For thick 

beams, the beam-size corrections should be added to 
ratios (3). The lowest order beam-size corrections enter 
(3) via the combination of beam quadrupole moments M2: 

2 2 23 , 3 , and 2x ya M a M M−  should be added to Eqs. (3), 

correspondingly, where (1) (2)
2 2 2(1 )M kM k M≡ + − , and the 

beam distribution quadrupole moments are 

 ( ) 2 2
2 ( , )( ).

i

i
i

S
M dxdy x y x yλ= −∫  (4) 

In Eq. (4), the integration goes along the beam cross 
section Si in the beam local coordinates, where (0,0) is the 
beam center. Definitions of some normalized charge 
distributions functions and their quadrupole moments are 
listed in Table 1: {1} is double-Gaussian, {2} is uniform 
rectangular. For non-symmetric distributions: uniform rhs 
semicircle {3}, semi-elliptic rhs double-Gaussian {4}, – 

x∆  is the distance between the cut edge and the beam 

center: 4 / 3x σ π∆ = for {3} and 2 /x xσ π∆ = in {4}. 

Table 1: Some transverse distributions of beam charge. 
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For the case when the horizontal beam separation is 
larger than other transverse offsets and sizes, i.e. when 
| |,| |,| |,| | | | 1x y y i xa a d dσ � � , the quadrupole ratio Q in 

(3) becomes ( ) 22 1 xQ k k d≅ − . This relation can be used 

to derive the horizontal beam separation xd directly from 

BPM measurements of Q, when the value of the charge 
misbalance k is known, either by design or from current 
measurements downstream of the splitter, where two 
beams are in separate beam pipes. After , xk d are known, 

the position of the two-beam system center ( ),x ya a can 

be found from the leading terms in Eqs. (3): 
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2.2 BPM Signal Ratios: Large Beam Separation 
When the horizontal beam separation becomes large in 

the AHF splitters, i.e. 1 | | 2xd≤ <  (again, in units of the 

chamber radius b), the expressions for BPM signal ratios 
have to be modified. The leading (zeroth-order) term of 
the quadrupole ratio (again, | |,| |,| |,| | 1x y y ia a d σ � ) is 
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Even the first-order terms here are too cumbersome, 
and therefore omitted; see [3] for more details. For two 
equal beams, the results look simpler: 
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where notation / 2h d≡
� �

was introduced for compactness. 
One should mention that the beam-size corrections to 

Eqs. (6,7) are exactly the same as those in (3); they are 
independent of the beam separation in the lowest order. 

3 ESTIMATES FOR AHF SPLITTERS 
According to beam dynamics simulations [1,4], two 

beamlets in the AHF splitter sections look as shown in 
Fig. 1, and their transverse beam-charge distributions can 
be approximated by semi-elliptic double-Gaussian ones 
(cf. distribution {4} in Table 1 for the rhs beam), with the 
rms values σx=3.7 mm and σy=2.4 mm. The horizontal 
beam separation g, from one beam cut edge to the other, 
increases from 5 mm near the entrance to the pulsed 
magnetic septum to about 5.2 cm at the entrance of the 
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first DC magnetic septum. The vacuum pipe ID changes 
from 2” to 4”, correspondingly. These two locations are 
the best ones for a diagnostic device that can be called 
“quadrupole monitor”. The center-to-center horizontal 
beam separation 2x xd g= + ∆ , so that the ratio /xd b  is 

equal to 0.43 and 1.14 at these two points, respectively. 
The quadrupole ratios for equal currents at the two points 
are Q1=0.088 (from Eq. (3); it includes the beam-size 
correction of -0.003), and Q2=0.586 from Eq. (7) (here the 
beam-size correction is -0.0008). Other corrections to Q 
are below a few percent when | |, | |, | | 0.15x y ya a d b< . We 

should emphasize that the beam-size corrections are rather 
small in this case. 

Expansions (3,5-7) for BPM signal ratios in terms of 
the beam parameters are simple enough to allow an 
effective processing of BPM signals to extract data on the 
beam separation and centering. Since the exact result (2) 
for the transverse fields is available, we can compare the 
derived expansions with it. Figures 2-4 show dependences 
of the quadrupole BPM signal ratio Q on various 
parameters of the two-beam system. 
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Figure 2: Quadrupole signal ratio versus beam separation 
for k=0.5, ax,y=0, dy=0: exact Eq. (2) (black solid curve), 

Eq. (3) (red short-dashed), Eq.  (7) (blue dashed).  
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Figure 3: The same, from exact Eq. (2), with:  k=0.5, 
ax,y=0, dy=0 (black solid); k=0.3, ax,y=0, dy=0.1b (red 

short-dashed); k=0.7, ax=0.1b, ay=0, dy=0 (green dashed); 
k=0.7, ax=0, ay=0.1b, dy=0 (blue long-dashed).  
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Figure 4: Q ratio versus current misbalance k: ax,y=0, 
dx=b, dy=0 (black solid); ax=0.1b, ay=0, dx=0.5b, dy=0 
(red short-dashed); ax=0, ay=-0.05b, dx=b, dy=0 (green 
dashed); ax,y=0, dx=1.2b, dy=0.2b (blue long-dashed).  

One can see that the expansions (3,5-7) for BPM signal 
ratios work quite well in their regions of applicability. 
Deviations of the two-beam center from the axis do not 
change Q significantly for the parameters relevant to the 
AHF splitters, as demonstrated in Fig. 3. Results for H 
and V ratios, as well as more details, can be found in [3].  

4 CONCLUSIONS 
The transverse field produced by two separated beams 

in a vacuum chamber has been calculated as a sum of the 
fields of two pencil (thin) beams plus corrections due to 
transverse distributions of currents in two beams. It is 
shown that for relatively large horizontal beam 
separations in a circular vacuum chamber, measurements 
in four points on the chamber walls (e.g., performed with 
a 4-stripline BPM) allow us to reliably determine the 
horizontal separation of two beams from the quadrupole 
ratio of signals, even if two beam currents differ by a 
factor of 2. If two separated beams have almost equal 
currents, or alternatively, if their current ratio is known 
from independent measurements by current monitors, one 
can also obtain from the BPM measurements the position 
of the center of the two-beam system.  

Estimates for the AHF beam splitters show feasibility of 
resolving the beam separation and the position of the two-
beam center using non-interruptive measurements with a 
simple 4-stripline BPM.  
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