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Abstract

The beam transfer function changes during the RHIC
ramp. The response of the RF control loops changes as a
result. A state-variable description of the beam and the RF
control loops was developed. This description was used to
generate a set of feedback matrices that keeps the
response of the RF control loops constant during the
ramp. This paper describes the state-variable description
and its use in determining the K matrices.

1 INTRODUCTION

The state-variable description of the beam was used in
models of the RHIC RF phase and radial control loops.
Two models were developed. A third order model was
used to calculate the K matrix coefficients at 124 different
values of the beam energy during the ramp. A fifth order
model, that includes the radial filter, was used to simulate
the response of the system using the coefficients found
with the third order model. The resulting coefficients
were found to be linear functions of the beam energy.

2 STATE-VARIABLE DESCRIPTIONS
2.1 The Beam

The beam state-variable description was developed
from the following equations:
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These equations can be simplified to [1]:
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Choosing the states to be the phase and the delta energy
gives the following description.
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With the following state-space equation:
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The auxiliary equations provide the relations between a

change in the beam energy and the resulting change in
beam radius and frequency.
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The state-space block diagram of the beam is then
represented as:
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Figure 1 Block Diagram of Beam Model

The multipliers A, B, C, and D must be constants in the
model. This condition is satisfied at fixed beam energies.
A MatLab™ M-file was written that calculated these
constants at 124 beam energies. A system matrix for each
beam energy was constructed using these values. Then
the K matrix at each beam energy was calculated.

2.2 System Model

The third order system that was used to calculate the K
matrices has the following state-space representation:
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with the following relations.
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The characteristic equation for the closed loop system is
found from [2]:
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3 CALCULATION OF THE K MATRIX

The third order model yields an analytical expression
that relates the K matrix elements and the system’s closed
loop pole positions. The requested poles were expanded
and the coefficients of equivalent powers of the
polynomials were equated. This led to these relations for
the K matrix coefficients in terms of the requested poles.
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Where the expanded pole polynomial is defined as:

s+ coeff(2)52 + coeff (3)s + coeff (4)

The MatLab program calculates the constants used in
the beam state-space representation, the third order
system matrices, the K matrix, the fifth order system
matrices (that includes the radial filter) and the poles for
the fifth order system. This procedure was repeated for
124 beam energies along the RHIC ramp, producing a K
matrix at each energy. The program also initializes the
workspace for Simulink™ after which a full simulation
can be carried out at a fixed energy.
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Figure 2 Simulink™ Model used to simulate the RHIC RF Loop
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4 K MATRIX AS A FUNCTION OF Bp

The individual elements of the K matrices yields the
following graphs:
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Figure 3 Graphs of the K Matrix Elements as functions of

Bp.

5 RESULTS

Table 1 shows the calculated pole positions for a
system using a fixed K matrix and a system using a
varying K matrix. A measure of the variation in the pole
position is the change in the natural frequency and the
change in the damping factor. Three of the poles are real
and remain real. The other two poles are due to the radial
filter. The percent change in the natural frequency of the
poles of the system with a varying K matrix is much
smaller than the uncorrected system, especially for the
low frequency poles.

Table 1 Pole Positions for systems with Fixed and

Varying K Matrices.
Poles at | Poles at Percent
Injection Flattop Change
(rad/sec) (rad/sec) W,
Fixed -0.1225 -0.5157 321
K Matrix -312.5 -6.396 -98
-4812 -5128 6.6
-6437+64291 -6432+6432i | -0.01
-6437-64291 -6432-6432i -0.01
Varying -0.1225 -0.1225 -0.0
K Matrix -313.1 -329.8 53
-4800 -4519 -5.9
-6437+64291 -6570+6350i | 0.7
-6437-64291 -6570-63501 0.7

Figure 2 shows the model that was used to simulate the
RHIC RF loop. For a Imm radial step input, the model
predicts a beam frequency rise-time of eight milliseconds.
The same rise-time was measured for a radial step input
into the RHIC RF system.

6 CONCLUSIONS

The graphs show an excellent linear fit to the
calculated K matrices. As expected the phase gain is
independent of the beam energy.

The varying K matrix stabilizes the closed loop pole
positions. The K matrix affects the three low frequency
poles the most, this is to be expected since these poles are
related to the phase, radius, and integrated error of the
radius loops. The other two poles are related to the radial
filter and move due to the increasing control effort
required as the beam becomes “stiffer”.
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