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Abstract 
The beam transfer function changes during the RHIC 

ramp. The response of the RF control loops changes as a 
result. A state-variable description of the beam and the RF 
control loops was developed. This description was used to 
generate a set of feedback matrices that keeps the 
response of the RF control loops constant during the 
ramp. This paper describes the state-variable description 
and its use in determining the K matrices. 

1 INTRODUCTION 
The state-variable description of the beam was used in 

models of the RHIC RF phase and radial control loops.  
Two models were developed. A third order model was 
used to calculate the K matrix coefficients at 124 different 
values of the beam energy during the ramp.  A fifth order 
model, that includes the radial filter, was used to simulate 
the response of the system using the coefficients found 
with the third order model.  The resulting coefficients 
were found to be linear functions of the beam energy. 

2 STATE-VARIABLE DESCRIPTIONS 

2.1 The Beam 
The beam state-variable description was developed 

from the following equations: 
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These equations can be simplified to [1]: 
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Choosing the states to be the phase and the delta energy 
gives the following description. 
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With the following state-space equation: 
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The auxiliary equations provide the relations between a 
change in the beam energy and the resulting change in 
beam radius and frequency. 
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The state-space block diagram of the beam is then 
represented as: 
 

 
           Figure 1  Block Diagram of Beam Model 

 
The multipliers A, B, C, and D must be constants in the 

model. This condition is satisfied at fixed beam energies. 
A MatLab M-file was written that calculated these 
constants at 124 beam energies. A system matrix for each 
beam energy was constructed using these values.  Then 
the K matrix at each beam energy was calculated.  

2.2 System Model 
The third order system that was used to calculate the K 

matrices has the following state-space representation: 
___________________________________________  
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with the following relations. 
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The characteristic equation for the closed loop system is 

found from [2]: 
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and is: 
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3 CALCULATION OF THE K MATRIX 
The third order model yields an analytical expression 

that relates the K matrix elements and the system�s closed 
loop pole positions. The requested poles were expanded 
and the coefficients of equivalent powers of the 
polynomials were equated. This led to these relations for 
the K matrix coefficients in terms of the requested poles. 
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Where the expanded pole polynomial is defined as: 
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The MatLab program calculates the constants used in 

the beam state-space representation, the third order 
system matrices, the K matrix, the fifth order system 
matrices (that includes the radial filter) and the poles for 
the fifth order system.  This procedure was repeated for 
124 beam energies along the RHIC ramp, producing a K 
matrix at each energy. The program also initializes the 
workspace for Simulink after which a full simulation 
can be carried out at a fixed energy. 

 

 
              Figure 2 Simulink Model used to simulate the RHIC RF Loop 
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4 K MATRIX AS A FUNCTION OF Βρ 
The individual elements of the K matrices yields the 

following graphs: 
 

 
 

 
 

 
Figure 3 Graphs of the K Matrix Elements as functions of 

βρ. 
 
 
 

5 RESULTS 
Table 1 shows the calculated pole positions for a 

system using a fixed K matrix and a system using a 
varying K matrix. A measure of the variation in the pole 
position is the change in the natural frequency and the 
change in the damping factor. Three of the poles are real 
and remain real. The other two poles are due to the radial 
filter.  The percent change in the natural frequency of the 
poles of the system with a varying K matrix is much 
smaller than the uncorrected system, especially for the 
low frequency poles. 

 
Table 1 Pole Positions for systems with Fixed and 

Varying K Matrices. 
 Poles at 

Injection 
(rad/sec) 

Poles at 
Flattop 
(rad/sec) 

Percent 
Change 
ωn 

Fixed 
 K Matrix 

-0.1225 
-312.5 
-4812 
-6437+6429i 
-6437-6429i 

-0.5157 
-6.396 
-5128 
-6432+6432i 
-6432-6432i 

321 
-98 
6.6 
-0.01 
-0.01 

Varying 
 K Matrix 

-0.1225 
-313.1 
-4800 
-6437+6429i 
-6437-6429i 

-0.1225 
-329.8 
-4519 
-6570+6350i 
-6570-6350i 

-0.0 
5.3 
-5.9 
0.7 
0.7 

 
Figure 2 shows the model that was used to simulate the 

RHIC RF loop.  For a 1mm radial step input, the model 
predicts a beam frequency rise-time of eight milliseconds.  
The same rise-time was measured for a radial step input 
into the RHIC RF system. 

6 CONCLUSIONS 
 The graphs show an excellent linear fit to the 

calculated K matrices.  As expected the phase gain is 
independent of the beam energy. 

The varying K matrix stabilizes the closed loop pole 
positions.  The K matrix affects the three low frequency 
poles the most, this is to be expected since these poles are 
related to the phase, radius, and integrated error of the 
radius loops. The other two poles are related to the radial 
filter and move due to the increasing control effort 
required as the beam becomes �stiffer�. 
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