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Abstract

In this note we will describe the Booster tune
quadrupoles, magnetic measurements, bare tune measure-
ments, and a 3 dimensional model we developed in order
to understand various aspects of the tune quadrupole mag-
nets that were not or could not be measured directly. We
will present data on tune shifts caused byḂ effects (e.g.,
vacuum chamber eddy currents) and results of a 3 dimen-
sional model of eddy currents. Finally we will present re-
sults from a MAD model of the Booster tunes and the pre-
dicted tune control ranges at the highest Booster rigidities.

1 INTRODUCTION

Accelerator models invariably depend on magnetic mea-
surements of the various components in the accelerator lat-
tice. For quadrupoles, accelerator simulators such as MAD
expect to be given a length and a gradient. In the case
of the AGS Booster only integrated gradients were mea-
sured [1, 2]. This is sufficient when the magnets are not
operated at the highests currents. Otherwise saturation ef-
fects need to be included. Since MAD expects a length
and a normalized gradient (K1 = 1

Bρ
∂Br

∂r ) as parameters
for a quadrupole, using a fixed length and a gradient based
on integrated field measurements will not predict the tunes
accurately. This is because the integrated field has to be
re-expressed to be interpreted as a gradient in the center of
the quadrupole.

∂Br

∂r
|z=0 =

1
Leff

∫ ∞

−∞

∂Br

∂r
dl (1)

SinceLeff is not a constant, but varies as a function of field
at the pole tips, the value used by MAD must vary as the
field increases (or the gradient needs to be renormalized to
include the change in effective length).

2 DESCRIPTION OF THE BOOSTER
TUNE QUADRUPOLES

The Booster lattice is built as a separated function,
FODO type lattice in which the defocusing quadrupoles are
slightly longer than the focusing quadrupoles. The Booster
arc dipoles and the two types of quadrupoles are powered
in series. Using the tune trim coils the tuning range at low
rigidities allows shifting the vertical tune up high enough
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to compensate for space charge tune shifts and avoid the
strong integer stop band atνy = 4. Stop band corrections
are used to correct for all the significant resonances be-
tweenνy=4 andνy=5.

The design bare Booster tunes were around 4.82. Af-
ter most of the quadrupole cores had already been built,
though, it was found, from magnetic measurements, that
the strengths of the quadrupoles relative to the arc dipoles
was 4.0% too low [4]. As a result, the bare Booster tunes
are now aroundνx = 4.63 andνy = 4.61, at low rigidities.
A complete listing of the booster quadrupoles characteris-
tics can be found in references [1, 2].

Although the cores of the two types of magnets are dif-
ferent lengths, the coils are all the same length. This means
the overall length of the magnets is the same, although the
magnetic lengths are different. This does not significantly
affect the magnetic characteristics.

Not all quadrupole vacuum chambers are round. Cur-
rently in DQ5 and FQ5 there are special “eared” chambers,
as shown in figure 1. After completion of the modifica-
tions for BAF, there will be 3 such chambers in the Booster
(DQ3, DQ5, FQ5). Note that all vertical quadrupoles are
located at odd locations (DQ3,DQ5, etc.) and all horizon-
tal quadrupoles are located at even locations (DQ2,DQ4,
etc.).

Figure 1: DQ3, DQ5, and FQ5 Vacuum chambers cross
section

3 BOOSTER TUNE MEASUREMENTS

In the 1992 and 1993 Booster commissioning notebooks
we found two independent sets of Booster bare machine
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tune measurements. For these tune measurements the same
procedure was followed. In each case the tune quadrupole
power supplies were left on, but with zero current (this was
to prevent the back-emf due to the main windings from
causing field to be pulled out of the magnets), the chro-
maticity functions were set for zero chromaticity (non-zero
currents in sextupoles), the beam intensity was made low
(to avoid space charge tune shifts at injection), and the RF
was left on (radius set to zero) during the main magnet in-
vert (to allow measurements during negativeḂ). What is
uncertain in these measurements is what the chromaticity
really was, how close the radius was to, and stayed at the
center of the quadrupoles, and whether or not the orbit was
corrected. In addition the data did not include the current
error in the tune quadrupoles (how much the real current
deviated from zero as a function of time orḂ). In any case
the measured bare tunes for the two sets are very consistent
with each other. These measurements show a large affect
from theḂ. Figure 3 shows the data.

4 3 DIMENSIONAL MODEL OF THE
TUNE QUADRUPOLES

Since we did not have measurements of the effective
length of the quadrupoles as a function of current (or field)
we developed a 3 dimensional model of both the short and
long quadrupoles using Opera3D. An image of the long
quadrupole for this model is shown in figure 4. The results
of the modeled effective lengths are shown in figure 2. This
data was fitted to a third order polynomial, which is used
in the MAD lattice file to define the length of the Booster
quadrupoles.
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Figure 2: Tune quadrupole effective lengths as a function
of current

5 VACUUM CHAMBER EDDY CURRENT
AND Ḃ EFFECTS

To model the vacuum chamber eddy current effects we
first created a 2 dimensional model of the quadrupoles with
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Figure 3: Bare tunes prediction with measured data

Figure 4: Opera3D model of a booster long quadrupole,
showing vacuum chamber eddy currents. In the right hand
figure the iron core of the magnet was taken out to show
the vacuum chamber more clearly.

a round Inconel vacuum chamber. The purpose of this was
to see whether eddy currents in the quadrupoles were sig-
nificant enough to explain the measured tune shifts. Since it
was a 2D model we could not see the relative difference be-
tween long and short quadrupoles, and the predicted tunes
shifts were equal, but significant. We next created a 3D
model and found there is little difference in the effect from
the 2D model. Using the predicted change in gradients it
became immediately apparent that the eddy currents do not,
by themselves explain the observedḂ effects. In fact they
cause the gradient to be reduced, decreasing the tunes, not
increasing.

Figure 4 shows the Opera3D model of a long quadrupole
with a vacuum chamber. The z-component of the current
density in the pipe is shown with different colors for differ-
ent current densities. Those shown in the figure correspond
to the maximumḂ that was modeled. The eddy currents
flow inside the vacuum chamber around the pole tips, with
red/pink (left and right hand sides) indicating current flow-
ing out of the paper (clockwise for the upper right coil).
Current in the coils flows in the opposite direction (counter-
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clockwise for the upper right coil). The result is a reduction
in the gradient seen by the beam.

In order for the bare tunes to increase with increasingḂ,
the gradient in the magnets must increase with increasing
Ḃ. To match the measured data, we included a set of cali-
bration coefficients. The purpose of this is to allow a cor-
rection to be included for the power supply response to the
back EMF due to theḂ. We found these coefficients need
to beCH = 3.4 andCV = 4.8 A/T/sec, which would put
about 30 A current through the trim windings at maximum
Ḃ, which is consistent with what we measure today.

IX = IDIPOLE + 0.2 · (IXtrim + Ḃ · CX) (2)

where X is replaced with either H or V. The equations used
in the model are: for the short quadrupoles,

K1 = (1−0.00004179 · 1
B

∂B

∂t
) · 1

BρLeff
<

∂Br

∂r
> (3)

and for the long quadrupoles,

K1 = −(1 − 0.000041942 · 1
B

∂B

∂t
) · 1.003

BρLeff
<

∂Br

∂r
>

(4)
and for the long quadrupoles with eared vacuum chambers,

K1 = −(1 − 0.000062913 · 1
B

∂B

∂t
) · 1.003

BρLeff
<

∂Br

∂r
>

(5)
whereLeff and< ∂Br

∂r > are derived from the respective
polynomials andB is derived from the polynomial expan-
sion for the main arc dipoles.
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Figure 5: bare tunes prediction using 3D transient model
and power supply response tȯB

6 EDDY CURRENT EFFECTS OF
EARED VACUUM CHAMBERS

The eared vacuum chambers also change the quadrupole
moment as a function oḟB. Since the eared vacuum cham-
bers are thicker than the normal vacuum chambers, the

eddy currents are larger by about 25%. Due to the sym-
metry of the structure the higher order field components
for sextupole, octupole, and above tend to cancel out, and
have magnitudes that are insignificant.

7 BOOSTER TUNE CONTROL AT HIGH
FIELDS

Using this new model of the Booster we can now pre-
dict how much tune space is accessible when we operate
at very high fields, assuming we can change the tune trim
quadrupoles by± 1000 A. Figure 6 shows the amount of
tune space available for rigidities from 14 Tm to 17 Tm.
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Figure 6: Tune control at high field, using± 1000 A in tune
trim supplies.

8 CONCLUSIONS

We now have a precise model of the Booster tunes and
tune control through the tune trim power supplies. In ad-
dition we have studied the affect of eddy currents in the
quadrupole vacuum chambers and demonstrated that mea-
sured tune shifts as a function ofḂ are affected, in part, by
these eddy currents, but are due more significantly to power
supply response tȯB.
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