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Abstract

Realistic calculation of NLC luminosity has been per-
formed using particle tracking in DIMAD and beam-beam
simulations in GUINEA-PIG code for various values of
beam emittance, energy and beta functions at the Interac-
tion Point (IP). Results of the simulations are compared
with analytic luminosity calculations. The optimum range
of IP beta functions for high luminosity was identified.

1 INTRODUCTION

Maximizing luminosity is an important part of the NLC
design optimization. Luminosity for the head-on symmet-
ric gaussian beam collisions is given by [1]

L =
nN2fH

4πσ∗
xσ∗

y

, (1)

where n, N , f , σ∗ and H are, respectively, the number of
bunches per train, number of particles per bunch, repeti-
tion rate, rms beam size at IP, and luminosity enhancement
factor due to pinch and hourglass effects [1]. For zero IP
dispersion, the beam size is σ∗ =

√
ε∗β∗, where ε∗ and β∗

are the beam emittance and beta function at IP.
For optimization of luminosity it is desirable to analyze it

as a function of beam parameters such as β ∗ and incoming
beam emittance ε0. The use of analytical formula (1) re-
quires accurate estimate of the final beam emittance ε∗ and
enhancement factor H . However, analytical calculation of
emittance dilution is complicated by the combined effect of
high order chromaticity, non-linear fields in the Final Focus
(FF) system and synchrotron radiation. Similarly, accuracy
of the empirical formula for luminosity enhancement factor
H [1] has limitations as well.

For a more accurate and realistic computation of lu-
minosity, we performed numerical tracking and beam-
beam simulations using DIMAD [2] and GUINEA-PIG [3]
codes. An automatic routine based on FFADA [4] was used
to generate and track particles in DIMAD and then use
the resultant distribution at IP for beam-beam simulation
in GUINEA-PIG. Below we present results of these simu-
lations, compare them with analytical calculations, and ex-
amine the optimum range for IP beta functions.

2 SIMULATIONS

The typical simulation in DIMAD and GUINEA-PIG in-
cluded 20,000 particles per beam with the initial gaussian
distribution in phase space, except for the energy spread
where an appropriate double-horned distribution was used.
Particles were tracked through the last 1433.8 meters of the
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Figure 1:
√

βx,y functions and dispersion Dx in the colli-
mation and FF sections (IP is on the right).

NLC beamline which includes the final collimation section
and the FF system as shown in Fig. 1 [5]. The ideal lattice
without magnet errors was used, and the incoming beam
distribution was matched to the initial machine phase el-
lipse. The following “nominal” set of the NLC parameters
for 250 GeV beams was used in the calculations: n=192,
N = 7.5 ·109, f = 120 Hz, γεx0/γεy0 = 360/4 [10−8 m],
β∗

x/β∗
y =8/0.11 mm, and σz =0.11 mm, where γε0 and σz

are the normalized emittance and rms bunch length of the
incoming beam, respectively. Emittance growth due to syn-
chrotron radiation in bends and quadrupoles was included
in the DIMAD tracking, and head-on collisions were as-
sumed for luminosity calculation.

The NLC FF optics includes a non-linear correction sys-
tem of sextupoles, octupoles and decapoles for compen-
sation of high order chromatic and geometric effects gen-
erated in the FF and collimation section [5]. Normally,
this system is optimized for the nominal set of parameters.
Variation of emittance, energy and beta functions changes
the beam size and synchrotron radiation effects in the FF.
As a result, an additional tuning of the non-linear correctors
may be needed to maintain maximum luminosity. How-
ever, a complete optimization of this system is somewhat
time consuming. For this reason, a different technique was
employed in the simulations to optimize this compensation.
In this method, a scaling factor was used to vary all bend-
ing angles in the FF dipoles and another factor to scale
dipoles in the collimation section. Relationship between
the two factors was fixed to keep the IP horizontal position
unchanged. Horizontal dispersion was linearly changed by
the scaling, but remained separately closed in the collima-
tion and FF sections. Strengths of the non-linear correctors
were scaled the opposite way to keep chromatic correction
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near optimum. This variation of corrector strengths allows
optimization of the FF geometric aberrations. The peak
luminosity found by optimizing the bend scale factor is de-
noted by Ls.

2.1 Variation of β∗ and Emittance

Luminosity as a function of β∗ and initial normalized
emittance γε0 was studied using the NLC FF design for
250 GeV beams with the nominal parameters listed above.
Two methods for variation of β ∗ were tested. In the first
method, six matching quadrupoles located between the col-
limation section and FF were adjusted to provide a local
optics change for a desired β∗. This adjustment changes
beta functions only in the FF system. As a result, the op-
timal relationship between the collimation and FF sections
is changed which may reduce the effect of the non-linear
compensation. In the second method, the FF quadrupoles
were not changed, but the initial betatron functions at the
beginning of collimation section were adjusted to provide a
desired β∗. This technique requires that the optics match is
done upstream of the collimation section. In this method,
beta functions change simultaneously in the collimation
and FF sections and, therefore, transformation between the
two sections is preserved which may be a better option for
keeping the non-linear compensation at optimum. Another
advantage of this approach is that the collimator settings
would not need to be changed. Simulations showed that
luminosity as a function of β∗

x is about the same in both
methods, but the second method delivered up to 7% higher
luminosity at very low β∗

y . In the following sections, only
the results of the second method are presented.

Luminosity versus β∗
y and β∗

x for 250 GeV beams is
shown in Fig. 2, 3, where L is obtained using tracking and
beam-beam simulations, Ls is L enhanced by optimizing
the bend scaling factor, and L0 is the analytical luminosity
without emittance growth and enhancement factor H :

L0 =
nN2f

4πσ∗
x0σ

∗
y0

, (2)

where σ∗
0 =

√
ε∗0β∗. Note that L0∼1/

√
β∗ in Fig. 2 and 3.

Ratio L/L0 quantifies the combined effect of luminosity
enhancement factor H and emittance growth in the colli-
mation and FF optics.

Fig. 2 shows rather weak dependence of L versus β ∗
y

with the maximum reached near β ∗
y =0.10 mm, close to the

nominal value of 0.11 mm. Luminosity is affected by the
beta factor 1/

√
β∗, emittance growth (due to synchrotron

radiation and high order aberrations), hourglass reduction
and pinch enhancement factors. At high values of β ∗

y , lu-
minosity reduction is dominated by the beta factor, while
at low β∗

y , it is caused by combination of the hourglass fac-
tor, pinch effect and emittance growth which prevail over
the stronger focusing. The hourglass factor calculated us-
ing analytical formula [6] for σz = 0.11 mm is shown in
Fig. 4 as a function of β∗

y . For symmetric flat beams it
only depends on ratio of β∗

y/σz . For example, it reduces
luminosity by 32% at β∗

y = 0.05 mm compared to 14% at

Figure 2: Luminosity versus β∗
y .

Figure 3: Luminosity versus β∗
x.

the nominal 0.11 mm. Emittance growth at low β ∗
y qualita-

tively may be explained by the increased beam size in the
FF magnets (∼1/

√
β∗

y ) which enhances non-linear optical
aberrations. Bend scaling increases luminosity (Ls) only
by ∼1%, but requires ∼30% stronger bends in the FF.

Luminosity versus β∗
x is shown in Fig. 3, where the nom-

inal β∗
x is 8 mm. In this case, the hourglass factor is roughly

constant. At low β∗
x, luminosity is increased by the beta

factor and to less extent by the pinch effect which prevail
over reduction due to emittance growth. Up to 9% higher
luminosity (Ls) can be achieved at low β∗

x by scaling the
FF bends by up to +57%. The scaling increases disper-
sion and reduces non-linear corrector strengths required for
chromatic compensation. As a result, enhancement of ge-

Figure 4: Hourglass reduction factor for σz =0.11 mm.
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Figure 5: Luminosity versus β∗
x for constant β∗

xεx0.

ometric aberrations caused by larger beam size in the FF
(∼ 1/

√
β∗

x) is compensated by the reduction of the sex-
tupole and other corrector strengths.

Fig. 5 shows luminosity versus β∗
x, where β∗

xεx0 is kept
constant. The first order beam size at IP and L0 are con-
stant in this case, but L is significantly reduced at low β∗

x.
This is caused by increased emittance growth from geomet-
ric aberrations which are enhanced by larger beam size in
the FF magnets (∼ 1/β∗

x). Similarly to the previous case,
luminosity can be improved by scaling the FF bends by up
to +85% at the lowest β∗

x.

2.2 Variation of Beam Energy

Luminosity as a function of energy (cms) is shown in
Fig. 6, where nominal parameters for 250 GeV beams are
used for all energy variation. A significant reduction of L
at high energy is explained by the effects of synchrotron
radiation in the FF bends and quadrupoles. As the energy
E increases, the beam size decreases as 1/

√
E which re-

duces high order geometric aberrations. But energy spread
created by synchrotron radiation in bends increases with
energy and enhances chromatic aberrations. This results in
the luminosity loss if the non-linear correction is not re-
optimized. Using the bend scaling method, compensation
can be improved and most of the luminosity recovered. For
peak luminosity Ls at high energy, the bending angles were
scaled down which reduced dispersion and energy spread
from synchrotron radiation. The corrector strengths were
correspondingly scaled up, but it was acceptable since ge-
ometric aberrations were reduced due to the smaller beam
size. The full range of the scaling factor was from 2.76
at E = 92 GeV (cms) to 0.42 at 1.5 TeV. Reoptimization
of the final doublet length to minimize synchrotron radia-
tion effects would keep the luminosity increasing at energy
higher than 1.5 TeV (cms).

2.3 Comparison with Analytical Calculation

Accuracy of the empirical formula for luminosity en-
hancement factor H [1] was verified by comparison with
the GUINEA-PIG simulations. The H factor includes the
hourglass reduction and pinch enhancement effects. Fig. 7
shows the GUINEA-PIG factor Hgp and empirical factor

Figure 6: Luminosity versus beam energy (cms).

Figure 7: Luminosity enhancement factor H versus β ∗
y .

He versus β∗
y corresponding to Fig. 2. It follows from

Ref. [1] that He was derived for σz/β∗
y ≤ 0.8 and its ac-

curacy is ∼ 10%. Fig. 7 shows an agreement of 1-5% be-
tween Hgp and He for σz/β∗

y ≤ 1.5, but He significantly
underestimates luminosity at lower β∗

y . We conclude that
for practical NLC beam parameters the empirical formula
provides reasonable estimate of luminosity.

3 CONCLUSION

Tracking and beam-beam simulations in the NLC colli-
mation and FF sections for 250 GeV beams showed that
luminosity is at maximum near β∗

y = 0.10 mm and can
be further increased by reducing β ∗

x. Optimization of the
non-linear compensation scheme for maximum luminos-
ity is required when beam parameters change, especially at
high beam energy. Accuracy of the empirical formula for
luminosity enhancement factor was found to be reasonably
good for the NLC parameters close to nominal.
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