

International Conference on Cyclotrons and their Applications (CYC2019), 22-27 Sep. 2019 @Cape Town, South Africa

Muon Cyclotron for Transmission Muon Microscope

T. Yamazaki, Y. Nagatani, Y. Miyake (KEK/J-PARC), J. Ohnishi, A. Goto (RIKEN), Y. Kumata, S. Kusuoka, T. Onda, H. Tsutsui (SHI)

re-accelerated up to 5 MeV with energy spread $\Delta E/E = O(10^{-5})$

Extraction	
Kinetic energy	5 MeV
Energy width $(\Delta E/E)$	$O(10^{-5})$
Emittance (1σ)	0.1π mmmrad
Magne	t
Average field	0.4 T
Number of magnet sectors	4
Hill gap	54 mm
Valley gap	200 mm
Extraction radius	262 mm
Trim coils	None
RF	
Number of dees	2(main) / 1(flat-top)
Harmonic mode	2
RF frequency	108 MHz
Dee voltage	50 kV
Flat-top RF frequency	324 MHz
Flat-top dee voltage	10 kV
Injectio	n
Spiral inflector	±4.5 kV
Extracti	on
Deflector	± 7.5 kV/mm
Magnetic channel	Passive

70

3D EM Simulations

Orbit Calculation

 \checkmark ±3 mm in R > 90 mm is possible.

Flat-top (3f) cavity simulated using CST MWS

 $\lambda/2$ resonator based on Y. Kumata's open patent.

0.05

0.05

0

20

10

-20

0.1 0.15 0.2 0.25 0.3 Rave (m)

0.25 0.3

 $\Delta E/E = 10^{-5} \rightarrow \Delta \phi = 8.23^{\circ}$

0.15 0.2 Rave (m)

The 4th order Runge-Kutta method is used.

To reduce $\Delta E/E$ and ϵ furthermore, we are redesigning the central region of the cyclotron now.

Spiral Inflector simulated using Opera-3D

Summary

- An AVF cyclotron with a flat-top RF system is under lacksquaredevelopment to realize a muon microbeam for the transmission muon microscope project at the J-PARC muon facility (MUSE).
- The muon cyclotron is designed in detail using 3D EM ulletsimulations (OPERA, CST) and multiparticle orbit calculation.
- Energy spread less than 2×10^{-4} has been achieved already, but we are trying to reduce it down to $O(10^{-5})$ by optimizing the central region.