FRB —  FFA Concepts, Upgrades and RF   (27-Sep-19   10:30—11:40)
Chair: A. Stolz, NSCL, East Lansing, Michigan, USA
Paper Title Page
FRB01 Designing Cyclotrons and Fixed Field Accelerators From Their Orbits 353
 
  • T. Planche
    TRIUMF, Vancouver, Canada
 
  Funding: TRIUMF receives funding via a contribution agreement with the National Research Council of Canada.
The transverse motion of particles in fixed field accelerators with mid-plane symmetry is entirely determined by the properties of the closed orbits. In this study I exploit this property to produce a variety of isochronous magnetic distributions. All the results presented in this paper are verified using cyclops simulations
 
slides icon Slides FRB01 [1.367 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-FRB01  
About • paper received ※ 23 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB02 FLNR JINR Accelerator Complex for Applied Physics Researches: State-of-Art and Future 358
 
  • S.V. Mitrofanov, P.Yu. Apel, V. Bashevoy, V. Bekhterev, S.L. Bogomolov, J. Franko, B. Gikal, G.G. Gulbekyan, I.A. Ivanenko, I.V. Kalagin, N.Yu. Kazarinov, V. Mironov, V.A. Semin, V.A. Skuratov, A. Tikhomirov
    JINR, Dubna, Moscow Region, Russia
 
  The main activities of FLNR, following its name – are related to fundamental science, but, in parallel, plenty of efforts are paid for practical applications. Certain amount of beam time every year is spent for applied science experiments on FLNR accelerator complex. The main directions are the production of the heterogeneousμ- and nano-structured materials; testing of electronic components (avionics and space electronics) for radiation hardness; ion-implantation nanotechnology and radiation materials science. Status of all these activities, its modern trends and needs will be reported. Basing on FLNR long term experience in these fields and aiming to improve the instrumentation for users, FLNR accelerator department announce the design study for a new cyclotron, DC140, which will be dedicated machine for applied researches in FLNR. Following the users requirements DC140 should accelerate the heavy ions with mass-to-charge ratio A/Z of the range from 5 to 8 up to fixed energies 2 and 4.8 MeV per unit mass. The first outlook of DC140 parameters, its features, layout of its casemate and general overview of the new FLNR facility for applied science will be presented.  
slides icon Slides FRB02 [7.680 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-FRB02  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB03 3D Radio Frequency Simulation of the INFN-LNS Superconducting Cyclotron 361
 
  • G. Torrisi, L. Allegra, L. Calabretta, A.C. Caruso, G. Costa, G. Gallo, A. Longhitano, L. Neripresenter, D. Rifuggiato
    INFN/LNS, Catania, Italy
 
  An upgrade plan of the Superconducting Cyclotron operating at INFN-LNS is ongoing. In this paper, a 3D numerical model of the Cyclotron radio frequency cavity is presented. Simulations include the coaxial sliding shorts, liner vacuum chamber, coupler, trimming capacitor and the Dees structures. CST microwave studio software has been used for numerical computation. RF simulations are mandatory also in order to analyze the field in the beam region and evaluate the impact of different Dees geometry and eventual field asymmetries. Moreover, 3D COMSOL Multiphysics simulations have been carried out in order to couple the electromagnetic field solution to a custom beam-dynamics code developed in Matlab as a future plan. Time evolution of accelerated beam and electromagnetic field make also possible to verify the magnetic field synchronization. Experimental validation of the developed model will be also presented.  
slides icon Slides FRB03 [19.931 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-FRB03  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)