Author: Wang, F.
Paper Title Page
MOP008 Mechanical Design of Beam Lines for a 230 MeV SC Cyclotron at CIAE 42
 
  • M. Yin, S. An, F.P. Guan, Y.L. Lv, G.F. Pan, F. Wang, F. Wang, S.M. Wei, L.P. Wen, T.J. Zhang, F.Zhu. Zhu
    CIAE, Beijing, People’s Republic of China
 
  Funding: This work was supported in part by the National Natural Science Foundation of China under Grant 11475269 and 11375274.
To develop the proton beam transfer system which used in the field of proton therapy, the mechanical design of proton beam lines based on the CYCIAE-230 has been finished at the China Institute of Atomic Energy (CIAE). The proton beam transfer system includes the beam lines, beam dump, gantry, nozzle, couch, image guidance system, etc. Two beam lines are designed at CIAE this moment. One is for the nozzle system, the other is for the beam dump. The beam lines include four systems: the energy selection system, the beam transportation systems, gantry system, beam dump. The beam lines are very compact in order to match the beam optics and the space limitation. The gantry can be rotated ±180°. There are several key components in beam lines, such as magnets, degrader, beam diagnostics component, vacuum component, etc. The designed mechanical tolerance of the magnets is limited less than 0.1 mm. There are at least four targets on each magnets for collimation and all the components can be adjusted in three dimensions. The magnets are being manufactured now. The mechanical design of proton beam lines based on the CYCIAE-230 will be presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP008  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP011 Magnetic Field Measurement and Shimming for a Medical Compact Cyclotron 48
 
  • L.L. Guan, S. An, T. Cui, P. Huang, X.L. Jia, M. Li, F. Wang, T.J. Zhang
    CIAE, Beijing, People’s Republic of China
 
  A compact cyclotron is developed by Cyclotron Accelerator Research Center at China Institute of Atomic Energy (CIAE) to extract 14 MeV proton beam for medical radioisotopes production, so as to meet the market demands of early diagnosis of malignant tumors, cardiovascular and cerebrovascular diseases. Owing to the small size and limited space of small medical cyclotrons, critical requirements are imposed on magnetic field measurement. For this reason, a magnetic field measurement system, with high-precision and high-stability, suitable for small cyclotrons is adopted and then an efficient magnetic field shimming method is used, which greatly reduces the construction period. It provides a strong guarantee for the stable operation of medical small cyclotrons.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP011  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA01 A New Solution for Cost Effective, High Average Power (2 GeV, 6 MW) Proton Accelerator and its R&D Activities 334
 
  • T.J. Zhang, S. An, T.J. Bian, F.P. Guan, M. Li, S. Pei, C. Wang, F. Wang, Z.G. Yin
    CIAE, Beijing, People’s Republic of China
 
  The 100 MeV compact cyclotron, CYCIAE-100 was approved to start the construction in 2011, and the first proton beam was extracted on July 4, 2014. In 2017, the 200 µA proton beam development was conducted, and in 2018, the production of high power beam from 20 kW to 52 kW had been delivered successfully to the beam dump. Due to the successful construction of 435 tons magnet for CYCIAE-100, it has been proved that the gradient adjustment of magnetic field along radius can effectively enhance the vertical focusing during the isochronous acceleration. This key technology was applied to the general design of a 2 GeV CW proton accelerator, the energy limitation of the isochronous machine is increased from ~1 GeV to 2 GeV, by our contribution of the beam dynamics study for high energy isochronous FFAG. This paper will introduce CIAE’s engineering experience of precision magnet, high power RF systems, and the advantages of beam dynamics simulation based on large-scale parallel computing. The cost-effective solution for such a 2 GeV high power circular accelerator complex will be presented in detail after the brief introduction about the high power proton beam production by the CYCIAE-100.  
slides icon Slides FRA01 [19.669 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-FRA01  
About • paper received ※ 15 September 2019       paper accepted ※ 23 June 2020       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)