Author: Wang, C.
Paper Title Page
MOP007 The Design and Calculation on the Injection and Central Region for CYCIAE-50 39
 
  • L.Y. Ji, S. An, F.P. Guan, P. Huang, X.L. Jia, Y.L. Lv, C. Wang, S.L. Wang, T.J. Zhang, X. Zheng
    CIAE, Beijing, People’s Republic of China
 
  A 50 MeV cyclotron (CYCIAE-50) is been building at China Institute of Atomic Energy. CYCIAE-50 is a compact H cyclotron with the proton beam energy of 30 MeV to 50 MeV and the beam current of 10 uA. A multi-cusp H ion source with the beam current of 3 mA will be used for this machine. The design on the injection and central region of CYCIAE-50 has been finished. The way of matching the beam from ion source to central region and the design of central region will be present in this paper. In addition, some significant problems in central region will be discussed, including radial alignment, axial focusing, longitudinal focusing and energy gain, etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP007  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA01 A New Solution for Cost Effective, High Average Power (2 GeV, 6 MW) Proton Accelerator and its R&D Activities 334
 
  • T.J. Zhang, S. An, T.J. Bian, F.P. Guan, M. Li, S. Pei, C. Wang, F. Wang, Z.G. Yin
    CIAE, Beijing, People’s Republic of China
 
  The 100 MeV compact cyclotron, CYCIAE-100 was approved to start the construction in 2011, and the first proton beam was extracted on July 4, 2014. In 2017, the 200 µA proton beam development was conducted, and in 2018, the production of high power beam from 20 kW to 52 kW had been delivered successfully to the beam dump. Due to the successful construction of 435 tons magnet for CYCIAE-100, it has been proved that the gradient adjustment of magnetic field along radius can effectively enhance the vertical focusing during the isochronous acceleration. This key technology was applied to the general design of a 2 GeV CW proton accelerator, the energy limitation of the isochronous machine is increased from ~1 GeV to 2 GeV, by our contribution of the beam dynamics study for high energy isochronous FFAG. This paper will introduce CIAE’s engineering experience of precision magnet, high power RF systems, and the advantages of beam dynamics simulation based on large-scale parallel computing. The cost-effective solution for such a 2 GeV high power circular accelerator complex will be presented in detail after the brief introduction about the high power proton beam production by the CYCIAE-100.  
slides icon Slides FRA01 [19.669 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-FRA01  
About • paper received ※ 15 September 2019       paper accepted ※ 23 June 2020       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)