Author: Conradie, J.L.
Paper Title Page
MOB02 Progress With a New Radioisotope Production Facility and Construction of Radioactive Beam Facility at iThemba LABS 17
 
  • J.L. Conradie, J.K. Abraham, H. Anderson, L.S. Anthony, F. Azaiez, S. Baard, R.A. Bark, A.H. Barnard, P. Beukes, J.I. Broodryk, B. Cornelius, J.C. Cornell, J.G. De Villiers, H. Du Plessis, W. Duckitt, D.T. Fourie, M.E. Hogan, I.H. Kohler, C. Lussi, J. Mira, H.W. Mostert, C. Naidoo, F. Nemulodi, M. Sakieldien, V.F. Spannenberg, G.F. Steyn, N. Stodart, I.L. Strydom, R.W. Thomae, M.J. Van Niekerk, P.A. van Schalkwyk
    iThemba LABS, Somerset West, South Africa
 
  With the termination of the neutron and proton therapy programs at iThemba LABS, the use of the Separated Sector Cyclotron (SSC) has now shifted to nuclear physics research with both stable and radioactive ion beams, as well as biomedical research. A dedicated isotope production facility with a commercial 70 MeV H-minus cyclotron has been approved and both the cyclotron and isotope production target stations will be housed in the vaults that were previously used for the therapy programs. The status of this new facility will be reported. In the future the SSC will mostly be used for nuclear physics research, as well as the production of isotopes that cannot be produced with the 70 MeV H-minus cyclotron. At present the production of the alpha-emitting radionuclide Astatine (211At) with a 28 MeV alpha beam is being investigated. Progress with the construction of a facility for production of radioactive beams will be discussed. There will also be reports on development work on the ECR ion sources and progress with implementation of an EPICS control system.  
slides icon Slides MOB02 [10.580 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOB02  
About • paper received ※ 13 August 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP016 Vertical Focussing with a Field Gradient Spiral Inflector 58
 
  • A.H. Barnard, J.I. Broodryk, J.L. Conradie, J.G. De Villiers, J. Mira, F. Nemulodi, R.W. Thomae
    iThemba LABS, Somerset West, South Africa
 
  Traditional spiral inflectors suffer from vertical defocussing, leading to beam loss. In this study the electrode shape of an inflector is modified to intentionally produce transverse electric field gradients, which have a significant influence on the optics. This is done by placing the traditionally parallel electrodes at an angle relative to each other in the transverse plane, creating a quadrupole field on the central path. Varying the electrode angle along the path length creates an alternating-gradient effect. The electrode entrance and exit faces are also shaped to create quadrupoles inside the fringe field. By numerical optimisation a design with good vertical focussing is obtained. Experiments show a roughly 100% increase in transmission in cases where the buncher is turned off. However, high losses at extraction are observed with the buncher turned on, due to RF-phase spread introduced by longitudinal defocussing in the inflector. This results in an improvement of only 20% during normal cyclotron operation, and shows that an inflector should ideally focus vertically and longitudinally at the same time. Ongoing work to achieve such combined focussing is described.  
poster icon Poster MOP016 [1.410 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP016  
About • paper received ※ 13 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP017 Research on Metallic Ion Beam Production With Electron Cyclotron Resonance Ion Sources 62
 
  • S.L. Bogomolov, A.A. Efremov, K.I. Kuzmenkov, D.K. Pugachev, Yu. Yazvitsky
    JINR, Dubna, Moscow Region, Russia
  • J.L. Conradie, D.T. Fourie, N.Y. Kheswa, J. Mira, F. Nemulodi, R.W. Thomae
    iThemba LABS, Somerset West, South Africa
 
  Many experiments in nuclear physics request the production of metallic ion beams. All elements from lithium up to uranium are of interest and most of them are required as a specific isotope which demands commonly enriched materials. Depending on the material properties beams of rare isotopes can be produced from solid materials or solid compounds. In this report the results of experiments carried out under a collaboration of JINR and iThemba LABS on the production of metallic ions from Electron Cyclotron Resonance Ion Sources (ECRIS) using resistive oven evaporation, Metal Ions from VOlatile Compounds (MIVOC) method and sputtering technique will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP017  
About • paper received ※ 11 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP007 Operational Experience in the Treatment of Ocular Melanomas with a New Digital Low-level RF Control System 162
 
  • T. Fanselow, J. Bundesmann, A. Denker, U. Hiller
    HZB, Berlin, Germany
  • J.K. Abraham, J.L. Conradie, W. Duckitt
    iThemba LABS, Somerset West, South Africa
 
  Ocular melanomas have been treated for the last 20 years at the Helmholtz-Zentrum Berlin in collaboration with the Charité Universitätsmedizin Berlin. However, parts of the initial control system electronics date back to the 1970s, when the machine was installed. Facing a critical shortage of legacy and obsolete components and with the down-time due to failures in the electronics on the increase, a decision was made to install the digital low-level RF control system, developed by iThemba LABS, on our K=132 cyclotron. A short description of the installation and commissioning process, which occurred in April 2017, and the experiences of the first 2 years of operation with the new digital low-level RF control system is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP007  
About • paper received ※ 14 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)