

1 1 1 1	

Outline

q present status and overview on the facility

q motivation to further raise the beam power

q components of the upgrade program:

§ new ion source

§ harmonic buncher (3x) and resonators for the Injector II

§ harm. buncher (10x), resonators for the Ring Cyclotron

§ impact on Meson production targets / spallation target

q beam losses and activation

q legal requirements

q time schedule and summary

PSI user laboratory key numbers 2006					
		SINQ C	PSI SIR		
	SLS	SINQ	SmS	PSI total	
Beamlines/instruments	11	12	6	29	
Instrument days	1076	1020	574	2670	
Experiments	653	260	135	1048	
User visits	1990	328	130	2448	
Individual users	934	259	95	1288	
New proposals	531	347	147	1025	
	g	n	m	[courtesy of Stefan Janssen]	
				M.Seidel, Cyclotrons 07	

Cyclotron Facility Upgrade Path

- keep absolute losses constant; increase acceleration voltage and beam quality, better turn separation at extraction
- new components: resonators 4 in Ring, 2 in Injector; harmonic bunchers: 3'rd harmonic for Injector; 10'th harmonic for Ring
- in addition: new ECR source; new absorbers for scattered beam at target E

planned turn numbers and voltages

	turns Ring	turns Injector	
now	A) 202 81		
(2.0mA)	(U _{peak} ≈3.0MV) (U _{peak} ≈1.12		
inter. step	~180	~73	
(2.6mA)	(U _{peak} ≈3.3MV)	(U _{peak} ≈1.25MV)	
upgrade	~165	~ 65	
(3.0mA)	(U _{peak} ≈3.6MV)	(U _{peak} ≈1.40MV)	

Components - New Ion Source

presently in use: Multicusp lonsource <u>disadvantages:</u>

- relatively low fraction of p+ ions
 (<50%)
- stability not optimal
- service (filament exchange every 2 weeks)

under development:

- compact **microwave ion-source** with permanent magnets
- ongoing tests; installation SD 2008
- <u>expected:</u> longer service periods, low emittance, improved stability (see paper by P.Schmelzbach at this conference, WEPPRB04)

FED components: 3'rd harmonic buncher for Injector II Cyclotron

Function of Harmonic Buncher

è third harmonic increases the linear range of effective buncher voltage

è impressed velocity modulation of beam in balance with repulsive space charge forces results in small energy spread at injection of the cyclotron

higher capture efficiency in cyclotron; strong space charge effects result in formation of short round bunches
 2.7mA extracted in 2006!

plot:

energy spread vs. phase of bunched beam at the injection of the injector cyclotron

see poster by J.Grillenberger et al TUPPRA18

Components: Additional Cavities for the Injector II Cyclotron

- two new cavities planned for f = 50.6MHz, U_{max} = 500kV; Q₀ = 28k, Material: Aluminum; sector shape: tight mechanical tolerances on the position of sealing surfaces
- replace two 150 MHz flat-top cavities
- resonators on order from industry
- contribution by L.Stingelin, TUPPRA19

CED Components: 10'th harmonic Buncher between Injector and Ring

- operating frequency 506 MHz; $U_{gap} = 220 kV$
- compress bunch length at injection in Ring-Cyclotron
- installation planned in SD 2008

FED "round beam" – space charge in cyclotrons

FEDBeam Dynamics Simulations

longitudinal dynamics in Ring Cyclotron

- \rightarrow behavior of short bunches, generated by 10'th harmonic buncher
- \rightarrow optimum parameters of flat-top cavity at these conditions

Components: new RF Resonators for Ring Cyclotron

- **two new resonators installed and operated** (together with two old Al resonators); remaining two will be installed in SD 2008
- f = 50.6MHz; $Q_0 = 4 \times 10^4$; $U_{max} = 1.2MV$ (presently 0.83MV \rightarrow 202 turns in cyclotron)
- transfer of up to 400kW power to the beam per cavity
- deformation from air pressure ~20mm; hydraulic tuning devices in feedback loop \rightarrow regulation precision ~10µm
- new copper cavities have less wall losses (potentially saves ~100kW per resonator); faster conditioning observed; better surfaces for vacuum seals

Components: High Power Meson Production Targets

Mean diameter:	450 mm
Graphite density:	1.8 g/cm ³
Operating Temp.:	1700 K
Irrad. damage rate	e: 0.1 dpa/Ah
Rotation Speed:	1 Turn/s
Target thickness:	60 / 40 mm
	10 / 7 g/cm ²
Beam loss:	18/12 %
Power deposit.:	30 / 20 kW/mA

3.0mA o.k., limit: sublimation

SPOKES

TARGET CONE

To enable the thermal expansion of the target cone

BALL BEARINGS *) Silicon nitride balls Rings and cage silver coated Lifetime 2 y *) GMN, Nürnberg, Germany

G.Heidenreich et. al.

FED Absorbers behind the Target need Upgrade

è absorbers capture scattered protons, up to 30% of the beam power

è at 3mA the uniformity of the losses on the three units has to be improved, as well as the cooling capacity

è absorbers are exchangeable without dismantling the vacuum system

side note on Spallation Target

[ultimate goal – more neutrons • which spallation target?]

- in 2006 test of liquid metal target MEGAPIE (lead/bismuth) → neutron flux raised by 80%; R&D program for production target under way (not before 2011)
- also: improvements on solid target may gain ~40%
- significant potential with target development, equivalent with more current

the future – liquid metal target?

beam window and assembled target of MEGAPIE;

[talk by F.Gröschel, Monday]

presence: D₂O cooled solid target

side view of **presently used solid target** (Zircaloy tubes filled with lead)

also this scheme has improvement potential!

FED

Controlling Beam Loss

Instrumentation:

- loss monitors: ionization chambers
- segmented collimators \rightarrow measure loss current
- transmission monitors \rightarrow difference between two current monitors
- many technical interlocks \rightarrow magnet currents, cavity voltages etc.

Legal Requirements for Upgrade

- present license allows for 2.0mA (actually losses are key parameter, but license specifies current)
- licensing process for 3.0mA under work!
- required: re-evaluation of shielding direct radiation; emission of radio nuclides; activation of components • radiation exposure of personnel

radiation dose monitored in experimental hall; accumulated charge vs. time; no correlation visible! personnel radiation dose shows no correlation between beam current and dose!

additional Infrastructure

- totally ~ 1200 employees radiologically monitored at PSI
- radiation monitoring network, contamination detectors, interlock systems, analytical equipment; facilities for dealing with radioactive components
- legally required: radioactive waste management prediction of nuclide content, decay time, professional storage etc.
- licensing through specialized and knowledgeable Swiss authorities

Milestones of the Upgrade Project

7 / 2007	place order for new resonators injector II
9 / 2007	authorization for short time operation at 2.2mA given
new:	[21.9.: auth. received; 28.9.: 2.15mA achieved; acceptable losses!]
12 / 2007	parameters 500MHz-buncher/flattop fixed (experiment + simulation)
3 / 2008	audit with Swiss authorities on licensing of operation at 3mA
4 / 2008	install two new resonators in ring cyclotron \rightarrow completed!
	500MHz (10'th harm.) is installed
11 / 2008	new building for injector II RF system incl. infrastructure completed
3 / 2009	resonator 2 for injector II delivered and controls for RF system installed
3 / 2010	resonator 4 for injector II delivered
4 / 2011	operation at 2.6mA (1.5MW)
12 / 2011	new collimators at target E installed (power limitation); extension of cooling capacity; improvement of SINQ cooling
4 / 2012	operation at 3.0mA (1.8MW)

1				
	_			
		L 1		
	-		_	

Summary

- the PSI cyclotron facility has significant further potential → an upgrade of the beam power from 1.2 to 1.8 MW is in progress
- the essential ingredients are improved resonators with higher gap voltages in the cyclotrons and harmonic bunchers that allow to inject short bunches in the cyclotrons
 [® round bunch scheme]

 for high power CW beam production cyclotrons present a very valid and cost efficient option!

Thank you for your attention!

