# New project and results from FFAG accelerators in Japan

06/11/06 Kota Okabe (Fukui Univ.) Yoshiharu Mori (Kyoto Univ.)

### **History of FFAG Proton Accelerator**

- 1953: Basic concept by Ohkawa Proton FF AG accelerator was not successful until recent difficulty in fabricating RF cavity with variable frequency & high gradient field
   1998 Development of RF cavity
   using Magnetic Alloy
   Grant-in-Aid for Scientific Res. by MEXT Y. Mori, KEK
- ! 2000 Development of Proton FFAG Accelerator
  - Grant-in-Aid for Scientific Res. by MEXT: Y. Mori, KEK
- ! 2005 Development of 150MeV multipurpose FFAG accelerator
  - 100Hz Operation!

Grant-in-Aid for Creative Basic Res.







### **Advantage of FFAG**

#### • Fast acceleration

DC magnetic field allows the beam acceleration only by RF pattern. No needs of synchronization between RF and magnets.

• High average current with large repetition rate and modest number of particles in the ring

Space charge and collective effects are below threshold.

#### • Large acceptance

Transverse (hor.)>10,000mm.mrad Longitudinal dp/p>10%

# FFAG R&D Activities in Japan (1)

• KEK

- POP FFAG 0.05-0.5MeV(1MeV):2000
  - proof-of-principle, scaling(DFD),proton, MA rf cavity
- 150MeV FFAG :2006

scaling(DFD), prototype for particle therapy, 100Hz

- PRISM project
  - Mu-e conversion:

Muon phase rotation ring

- Mitsubishi Elect. Co.
  - table-top electron accelerator

X-CT:FFAG+synchrotron hybrid

# **PRISM project**

2003/7/7



#### **Phase Rotation Simulation:** Horizontal Phase Space



FFAG03@KEK



4900 4950

r(mm)

4800

4850 4900

485D

485D

r(mm)

1111

r(mm)

4900 4950

## FFAG R&D Activities in Japan (2)

- Kyoto Univ., RRI
  - ADS(Accelerator Driven System) project, FFAG+Reactor:2007

3 rings (Injector(2.5MeV spiral), booster(20MeV DFD), main ring(150MeV,DFD)

• NEDO project/site KURRI

 ABNS(accelerator-based neutron source) for BNCT (boron neutron capture therapy):2008
 ERIT (emittance/energy recovery internal target): FFAG proton strorage ring + internal target, 11MeV proton+ Be target, ionization cooling

#### **Configuration of FFAG Accelerator Complex (ADS)**



#### Layout of FFAG Accelerator Complex (ADS)



## Neutron source for BNCT FFAG-ERIT scheme

Requirements from BNCT(Boron Neutron Capture Therapy): In order to remedy the tumor of  $10 \text{cm}^2$ ,  $2*10^{13}$  neutrons are needed. If we assume that remedy time is 30 minutes => Flux  $\Phi > 10^9/\text{cm}^2$  sec.

Accelerator as a neutron source ;

Energy is low, but beam current is very large (I > 40mA [CW])

Technically hard and expensive

**ERIT** : <u>E</u>mittance-Energy <u>R</u>ecovering <u>I</u>nternal <u>T</u>arget

The stored beam is irradiated to the internal target, it generates the neutron in the storage ring. The beam energy lost in the target is recovered by re-acceleration.

#### Feature of ERIT scheme

Beam current reduced by storage the beam in the ring.

# **Overview of FFAG-ERIT** accelerator system



### Requirement performance of FFAG-ERIT

#### Neutron flax enough for 1 hour treatment $\sim 10^9$ n/cm<sup>2</sup>/s

#### Injector (LINAC) :

Beam energy Averaged beam current Ion species FFAG-ERIT ring : Circurated beam current Storage turn num. Target (Be, 5,10μm) : Life time Moderator : γ, fast neutron 11 MeV 70 ~ 75 μA(@ 1000turns storage) H-

70 ~ 75 mA 500 ~ 1000 turns

> 1 month

Nuclear reactor level

### **Design issue of FFAG ring Beam dynamics, Magnet, RF Cavity**

**Requirement performance** (depend on injector beam current) **500 ~ 1000 turns** Storage turn num.

• Beam dynamics and optics

momentum acceptance  $dp/p \sim 5$  [%] (full) transverse acceptance strong beam focusing at target  $\beta_v \sim 0.7$  [m] (@target)

 $> 1000 [\pi \text{ mm mrad}]$ 

• Large aperture magnet

gap height

 $\sim 15 \,[{\rm cm}]$ 

- Ring size (to be the compact which can be installed in the hospital) mean radius  $(r_0)$ ~ 2.35 [m]
- RF cavity
  - frequency rf voltage

 $\sim 20 \text{ [MHz]} (h = 6)$ > 200 [kV]

## **Ionization cooling**

The rate equation of beam emittance passing through a target material is,

Longitudinal  

$$\frac{d\langle \sigma_{E}^{2} \rangle}{ds} = -2 \left( \frac{\partial (dE/ds)}{\partial E} \right)_{0} + \frac{dE}{ds} \frac{1}{pc\beta} D \frac{\rho'}{\rho_{0}} \right) \langle \sigma_{E}^{2} \rangle + \frac{d\langle \Delta E^{2}_{rms} \rangle}{ds}$$
Cooling term —  
Horizontal  

$$\frac{d\varepsilon_{x}}{ds} = -\frac{1}{\beta^{2}E} \frac{dE}{ds} \left( 1 - \frac{D\rho'}{\rho_{0}} \right) \varepsilon_{x} + \frac{\beta_{x}E_{s}^{2}}{2\beta^{3}m_{p}c^{2}L_{R}E}$$
When the wedged target is placed at dispersive point,  $\frac{\partial (dE/ds)}{\partial E}$  can be possible.  
Vertical  

$$\frac{d\varepsilon_{y}}{ds} = -\frac{1}{\beta^{2}E} \frac{dE}{ds} \varepsilon_{y} + \frac{\beta_{y}E_{s}^{2}}{2\beta^{3}m_{p}c^{2}L_{R}E}$$
Wedge Target Acceleration Cavity

### Magnetic field calculation (TOSCA)

FDF lattice F-Mag. = 6.4[deg], D-Mag. = 5.1[deg], F-D gap 3.75[deg], F-Clamp gap = 1.9[deg], Clamp thick = 4[cm]Mean radius = 2.35[m]

11MeV proton beam  $v_x \sim 1.75$ ,  $v_y \sim 2.23$ FD ratio  $\sim 3$ 



### **Surviving turn number**

**ICOOL** (Used TOSCA field map)



Mean surviving turn num. 810 turns

#### **RMS** emittance and energy spread



#### Surviving ratio v.s. Number of turns Mean surviving turn num. 910 turn



 $\beta_y = 0.83[m]$  :  $v_y = 2.22$ , Mean surviving turn num. 810 turn  $\beta_y = 0.75[m]$  :  $v_y = 2.32$ , Mean surviving turn num. 910 turn

## **Summary (FFAG-ERIT)**

- Physical design is completed.
- Preparation of infrastructure(water, electricity, etc.) at KURRI is completed.
- Installation of machine is in process at KURRI.