Progress in Seamless RF Cavities

Activities of DESY, INR, INFN, KEK, JLab, MSU, Black Laboratories

Presented by W. Singer
DESY
The best Q(E_{acc}) result of by hydroforming produced single cell cavity

The best Q(E_{acc}) result of by spinning produced single cell cavity

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Progress in superconducting joints is beneficial for the seamless option

Make possible produce the cavities consisting of a rotationally symmetric cells part (by applying “seamless” fabrication technologies) and asymmetric end groups

For more see P. Kneisel etc. Poster TUP56

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
First spun 9-cell cavity

New spinning machine. The two spinning turrets (revolver heads) work one against each other.

Spinning (V. Palmieri, INFN)
The problem of excessive thinning at the terminal iris.
DESY: Z145: 9-cell as 3x3 cell cavity hydroformed. Poster TUP52

Work was supported by CARE

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Fabrication steps of 9 cell cavity by hydroforming as option 3x3
The 9-cell hydroformed cavity was completed at E. ZANON

Fabrication included following steps:
- Fabrication of the long and short end groups connected with three cell units
- Machining, preparation and welding of three units together in a 9 cell cavity (two iris welds done from outside)
- Machining, preparation and weld on of the stiffening rings

The cavity is in preparation for the RF test at DESY
Seamless technique by hydroforming

Principle of tube diameter reduction in the iris area (necking)

Necking equipment

Principle of hydroforming

Hydroforming machine

HYDROFORMA

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Some key ideas that have been decisive for hydroforming success

Principle of diameter reduction in the tube end and in the tube middle

Synchronization mechanism for the final step of hydroforming

Nonsymmetrical mould for hydroforming
Three cell units for second cavity are in work on CBP at DESY. FNAL would like to work with that cavity after it completing Barrel polishing, 800° C annealing, EP (KEK recipe) seams to be a most appropriate treatment for seamless cavities

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
DESY-KEK

Fabrication of NbCu clad cavities

One NbCu sandwiched cavity was tested NSC-3.

Hot roll bonded tube fabrication at Nippon Steel Co., hydroforming at DESY, Preparation and RF tests at KEK

Single cell NbCu cavities produced earlier at DESY by hydroforming from KEK sandwiched tube.

Four double cell NbCu clad cavities produced at DESY from KEK tubes (no cracks on the inside surface)

NSC-3: Barrel polishing, CP(10 µm), Annealing 750°C x 3h, EP(70 µm) K.Saito
Up to now only sandwiched tube. Cu layer on both sides prevent creating of cracks in Nb; removing of inside Cu layer after forming chemically (costly)

DESY proposal: Using special Cu with high recrystallization temperature

Microstructure of Cu0.15%Zr (left) and Nb (right) after annealing at 800°C for 2 hours.

Stress-strain behavior and thermal conductivity of Cu0.15%Zr after annealing at 800°C for 2 hours compared with Cu and Nb.

Thermal conductivity can be recovered by aging at ca. 400°C/one hour. Zr left the solid solution and creates precipitates Cu₅Zr finely distributed in Cu matrix.

The Cu0.15%Zr shows a high elongation after annealing at 800°C, small and rather uniform grain and can be a good candidate for replacing of pure Cu in NbCu clad tubes.
Cu only outside: Cu0.15%Zr special Cu with high recrystallization temperature

NbCu0.15%Zr tube, produced at Company NU-TECH Precision Metals (Canada)

Single cell cavities produced from Nb/Cu0.15%Zr clad tube

P. Kneisel is willing to do the preparation and RF test after cavity completing
ILC activities provided a new push for seamless option. KEK (K. Ueno, K. Saito)

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Necking Machine for 9-cells cavity
KEK hydroforming machine. Upgrade from 3 cell to 9-cell hydroforming is in work

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Hydroformed multi cell Cu cavities of ICHIRO shape

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Chris Compton
Looking to Industry for the answers

Don’t get technical, “build my widget”

- US industry with 125 year of experience
- Formed similar products, Bellows
- Dies inexpensive, easy to fabricate and modify

Cavity after hydro-forming

Prototype copper 2.45 GHz (reduce initial costs)
- annealed (700°C, 1 hr > 50% elongation (Nb ~ 55%)
- starting wall thickness: 0.125”
Hydro-forming Samples

One step ~3000 psi, with axial force

- Thinning observed at equator (0.125” → 0.08”)
- Little thinning at Iris, showing material to swag/groove to smaller diameter
- Some “orange peeling” observed at equator
R. Crooks
Black Laboratories – ATI Wah Chang – Florida State University

Plan:
- Homogeneous, fine-grained, tube for hydroforming

Progress to date:
- Bulk processed, RRR Nb billet
- Fine-grained, equiaxed
- 94% Recrystallized

Scheduled (Spring '08):
- 150 mm diameter RRR tube

Inverse Pole Figure, SPD + Recrystallized

W. Singer. Seamless Cavities. 13th International Workshop on RF Superconductivity, October 15-19, 2007, Beijing, China
Alternative ideas: Cavity fabrication from single crystal tubes

Proposal of E. Palmieri: Single crystal cavity fabrication from back extruded single crystal tubes by spinning or hydroforming

Seamless tube fabrication by back extrusion.

Proposal of R. Graham (Wah Chang): Single crystal cavity fabrication from single crystal tubes produced by EB floated zone method

- EBFZ on tubular melt stock
- May be able to produce a single crystal tube
- Thin wall contains molten zone
- Surface tension may be able to support molten metal column
- Benefits of zone refining
- Tube could be hydroformed or spun to cavity shape
Single crystal tube fabrication:

- Rolling of the single crystal with intermediate annealing,
- EB welding with matching of the orientation, welding
- Cavity fabrication by e.g. hydroforming

X-Ray reflexes are the same in both welded together crystals and in the welding seam.
结论

1. 生产细胞洞成为现实到目前为止的加氢重整和转动的技术

2. 应该放更多努力入无缝的技术

3. 的工业化加氢重整或转动单晶洞在有趣的选择能成为
Conclusions

1. Proof of principle is done. Eacc of 40 MV/m is achieved. 9-cell cavities are produced.

3. More effort should be put into industrialization of seamless technique.

3. Seamless activities have newcomes with new ideas e.g. hydroforming or spinning of the single crystal cavities.
Many thanks for support by preparing of the presentation to

C. Compton
R. Crook
R. Graham
I. Jelezov
P. Kneisel
V. Palmieri
K. Saito
K. Ueno