Advances in SRF Material Science aimed at High Q cavities

Anna Grassellino
SRF Development Department, TD
Fermilab

NA-PAC 2013
Pasadena, California
Outline

• Motivation for pushing for higher quality factors
• New insights on understanding of origin and causes of RF losses
 – Hydrides formation
 – Flux trapping
 – Surface resistance decomposition
• New surface processing techniques for high Q cavities
 – Doping with small amount of interstitial impurities
• Q ‘preservation’ in a real machine
• Outlook and conclusions
Steady progress due to basic understanding of limiting phenomena and invention of effective cures
SRF core technology for accelerators worldwide

- **Low energy nuclear physics**, for nuclear shape, spin, vibration... – Heavy ion linacs
- **Medium energy nuclear physics**, structure of nucleus, quark-gluon physics
 – Recirculating linac
- **Nuclear astrophysics**, for understanding the creation of elements
 – Facility for rare isotope beams (FRIB)
- **X-Ray Light Sources** for life science, materials science & engineering
 – Storage rings, free electron lasers, energy recovery linacs
- **Spallation neutron source** for materials science and engineering, life science, biotechnology, condensed matter physics, chemistry
 – High intensity proton linac
- **Future High Intensity Proton Sources** for
 – Nuclear waste transmutation, energy amplifier, power generation from Thorium
- **High energy physics** for fundamental nature of matter, space-time
 – Electron-positron storage ring colliders, linear collider, proton linacs for neutrinos
Need for higher Q

- Increasing Q of cavities – very important for high duty factor accelerators – virtually all planned superconducting machines (e.g. Project X, LCLS-II, ERLs…)
- Capital and operational costs scale with dissipated power $\sim 1/Q$

\[Q_0 = \frac{\omega_0 \mu_0 \int_V |\mathbf{H}|^2 \, dv}{R_s \int_S |\mathbf{H}|^2 \, ds} \]

\[G = \frac{\omega_0 \mu_0 \int_V |\mathbf{H}|^2 \, dv}{\int_S |\mathbf{H}|^2 \, ds} \]

Increase Q – for CW (PX, LCLS, Cornell ERL etc)

Increase E_{acc} – for pulsed (ILC)
How to approach the problem?
What to look for?
The ‘macroscopic’ does not always matter

Typical surface processing sequence:

100-200 μm EP/BCP + 800°C + light EP/BCP + 120°C

Bad looking surfaces, normal performance:

- Swirl cavity, Q above 2e10 @ 2K
- Pits cavity, 38 MV/m
RF surface resistance of a superconductor: the microscopic is what mostly matters

- Supercurrents flow in the thin London layer to screen the SC bulk from magnetic field
- In DC case currents flow with zero resistance but in RF case—due to the inertia of the Cooper pairs—electric field is present in the London layer causing losses
- Recent studies (Romanenko et al – Phys. Rev. ST Accel. Beams 16, 012001 (2013)) show that the first few nanometers strongly affect the Q value!

Processes which can modify this layer in a controlled manner are of special interest
Nb microwave surface resistance

$$R_s = R_{BCS}(T) + R_0$$

BCS resistance:
- 'unpaired' electrons at a finite T:
 - Scales as f^2
 - Depends on mean free path, gap, critical T, several microscopic parameters (London depth, coherence length)

Residual resistance:
- T independent component, known and unknown contributions:
 - Scales as \sqrt{f}
 - Trapped flux
 - Hydrides

Compare with Cu: $R_s \sim 10 \text{ m}\Omega$

Choose Nb because
- a) Has high T_c, $H_c \rightarrow$ low R_s
- b) Easy to fabricate
New insights on understanding of origin and causes of RF losses
Techniques employed to gain understanding of origin of RF losses

- Experiments on cavities – eg $R_s(B)$ deconvolution as a function of surface treatments, T-mapping...
- Elemental and microstructural investigations: SIMS, XPS, XRD, PAS, ERD, cryogenic laser confocal microscopy...
- Superconducting properties studies: magnetization, muon spin rotation, Bitter decoration, magneto optical imaging, point contact tunneling...
Causes of RF losses: hydrides

Knobloch and Padamsee, 8th Workshop on RF Superconductivity, Padova, Italy. SRF 981012-12

M. Checchin and A. Grassellino, to be published

1980's, reactor-grade material (RRR = 40) had been used. Then there was a strong push to improve the quality of as-delivered niobium and to post-purify cavities during a 1400–30°C bakeout combined with solid-state gettering[8, 9, 10]. In that manner RRR values were increased up to 500 and, as predicted, achievable gradients were also improved substantially[2]. However, the use of high-purity niobium also lead to the discovery of a new anomalous loss mechanism—the so-called “Q disease.”

THE Q DISEASE

Discovery

A significant advantage of a vertical test stand as in Figure 2 lies in the ability to

FIGURE 5. Q0 curves of a cavity, once measured after a fast cooldown and once after a slow cooldown[11].
Causes of RF losses: hydrides

M. Checchin and A. Grassellino, to be published

1980's, reactor-grade material (RRR = 40) had been used. Then there was a strong push to improve the quality of as-delivered niobium and to post-purify cavities during a 1400-°C bakeout combined with solid-state gettering[8, 9, 10]. In that manner RRR values were increased up to 500 and, as predicted, achievable gradients were also improved substantially[2]. However, the use of high-purity niobium also lead to the discovery of a new anomalous loss mechanism—the so-called “Q disease.”

THE Q DISEASE

Discovery

A significant advantage of a vertical test stand as in Figure 2 lies in the ability to

Knobloch and Padamsee, 8th Workshop on RF Superconductivity, Padova, Italy. SRF 981012-12
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
T=160K

Hydrides first appear

T=300K

F. Barkov, A. Romanenko, A. Grassellino, Proceedings of SRF'2013, TUP014

Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

T=300K

T=160K

T=140K

T=100K

Hydrides first appear

Second (smaller) phase of hydride forms

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014

Hydrides first appear at T=160K
Second (smaller) phase of hydride forms at T=100K and T=6K.

Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

T=160K

T=100K

T=300K

T=140K

T=6K

T=180K

50 um

Second (smaller) phase of hydride forms

Hydrides first appear

F. Barkov, A. Romanenko, and A. Grassellino, Proceedings of SRF'2013, TUP014

U.S. DEPARTMENT OF ENERGY

Fermilab
Hydrides first appear at T=160K. A second (smaller) phase of hydride forms at T=100K. The images show the evolution of the hydride phase at various temperatures: T=300K, T=160K, T=140K, T=100K, T=6K, and T=180K. The Cryogenic Laser Confocal Microscopy technique was used by A. Romanenko et al. for the first cooldown.
F. Barkov, A. Romanenko, A. Grassellino, Proceedings of SRF'2013, TUP014

Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

- **50 um**
- **T=160K**
- **T=100K**
- **T=6K**
- **T=140K**
- **T=300K**
- **T=210K**
- **T=180K**

Hydrides first appear

Second (smaller) phase of hydride forms

Large phase starts to dissolve
F. Barkov, A. Romanenko, A. Grassellino, Proceedings of SRF'2013, TUP014

Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

- Hydrides first appear at T=160K
- Second (smaller) phase of hydride forms at T=100K
- Large phase starts to dissolve at T=6K
- Dissolution continues at T=180K
- Complete dissolution at T=210K
- Further dissolution at T=260K
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: First cooldown

Hydrides first appear at T=160K.
Second (smaller) phase of hydride forms at T=100K.
Large phase starts to dissolve at T=210K.

Hydrides gone, dislocation skeleton (deformation) remains on the surface at T=260K.
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: Second cooldown

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: Second cooldown

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Hydrides (both phases) now appear at higher T.

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Hydrides (both phases) now appear at higher T.
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: Second cooldown

190K

Hydrides (both phases) now appear at higher T

180K

160K

300K

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF’2013, TUP014
Hydrides (both phases) now appear at higher T.
Hydrides (both phases) now appear at higher T.

Second phase now growing larger.

F. Barkov, A. Romanenko, A. Grassellino, Proceedings of SRF'2013, TUP014
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: Second cooldown

Hydrides (both phases) now appear at higher T.

Second phase now growing larger.

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Hydrides (both phases) now appear at higher T

Second phase now growing larger

F. Barkov, A. Romanenko, and A. Grassellino,
F. Barkov, A. Romanenko, A. Grassellino,
Proceedings of SRF'2013, TUP014
Hydrides (both phases) now appear at higher T

Second phase now growing larger

Cryogenic Laser Confocal Microscopy by A. Romanenko et al: Second cooldown
Cryogenic Laser Confocal Microscopy by A. Romanenko et al: Second cooldown

Hydrides (both phases) now appear at higher T

Second phase now growing larger

300K 190K 180K
160K 140K 100K
Hydrides (both phases) now appear at higher T.

Second phase now growing larger.

More "skeleton"
Hydrides form much easier and at a higher temperature at both the "skeleton" left behind in the first cryocycle and at the locations of the second phase => cannot avoid Q-disease.
Hydrides (both phases) now appear at higher T.

Second phase now growing larger.

Hydrides form much easier and at a higher temperature at both the “skeleton” left behind in the first cryocycle and at the locations of the second phase => cannot avoid Q-disease.
Causes of RF losses: Trapped flux

Figure 1: a) Decoration pattern at the magnetic field 10 mT reveals coexistence of “bundles” and Meissner regions. Each bundle carries 80 magnetic flux quanta in average; b) zoom-in of a single bundle.

Figure 4: Decoration pattern for a flat sample at the magnetic field 8 mT reveals coexistence of regions with bundles and Abrikosov vortices.
Origin of RF losses: Field Dependence of Surface Resistance for typical treatments

• Crucial question – how does *medium field Q-slope* emerge from its components $R_{\text{BCS}} (B)$ and $R_0 (B)$?

• Answering allows:
 – Obtain $R_s(B,T)$ predictions for any standard treatment (EP, BCP, mild bake, anneal...) to design accelerators -> missing input for optimization
 – *Baseline for comparison* with new, innovative treatments
 – *Fundamental understanding* of “Q-slopes”
Approach

- Obtain as many $Q(B,T)$ measurements as practical at \textit{ALL fields} (not only at a single low field as is customary)

- At each fixed field fit corresponding $Q(T)$ to extract R_{res}
 - Also gives $R_{\text{bcs}}(T) = R_s(T) - R_{\text{res}}$

A. Romanenko and A. Grassellino

• Temperature dependent component **uniquely determined by surface processing**
• Both R_{BCS} and R_0 field dependence is **determined by the surface processing**
• R_{BCS} decreases but becomes **strongly field dependent after 120C**
• Medium field Q slope is **NOT due to thermal feedback**, stronger $R_0(B)$ for **BCP vs EP**
New surface processing techniques for high Q
Attack strategy based on fundamental understanding of causes of RF losses

Ideas to minimize BCS resistance:

- Modify mfp, penetration depth \rightarrow \textit{doping} with interstitials
- Modify gap \rightarrow eliminate sources of gap suppression (precipitates), create \textit{higher Tc} compound (NbN, Nb$_3$Sn...)

Ideas to minimize residual resistance:

- Minimize trapped flux \rightarrow eliminate \textit{trapping centers}
- Avoid precipitates (e.g. hydrides) \rightarrow minimize \textit{nucleation centers}, minimize \textit{hydrogen reabsorbed}, neutralize hydrogen via doping

See talk by Sam Posen!
Annealing as a last processing step

- **EP + 800C 2 hrs + 20-40 micron EP + 120C**
- **Systematically low** $R_0 \sim 1\text{n}\Omega$
- **Extra cost savings from skipping the post furnace chemical processing**
Annealing as a last processing step

- **EP + 800°C 2 hrs + 20-40 micron EP + 120°C**
- **Systematically low \(R_0 \approx 1 \text{nΩ} \)**
- **Extra cost savings from skipping the post furnace chemical processing**

![Graph showing Q vs. \(E_{\text{acc}} \)]

1.3 GHz, 2K

50-60%

\[Q \]

\[E_{\text{acc}} \text{ (MV/m)} \]

- TE1ACC005 standard EP
- PIPPS003 EP + 800°C 3hrs with caps and foil
- TE1AES016 large grain EP + 800°C 3hrs

Higher Q
Simple higher Q_0 recipe: 120C bake +1 HF rinse

- Single HF rinse (5 min) followed by water rinse is beneficial for the medium field Q value – gains of up to 35% measured at 70 mT, 2K, up to 100% at 1.8K
- Cornell already implemented successfully on several multicell cavities

NEW- FNAL: High T bake in nitrogen gas

- Several cavities treated with nitrogen at different T: 600C, 800C and 1000C for different duration
- Q all extremely poor after treatment ~ 10^7-10^9
- Then, we removed a certain amount of material via electropolishing

Standard 800C degassing cycle

Gas injection, ~10 min
Record Quality Factors obtained via impurity doping - beyond the expected BCS limit for Nb

Comparing nitrogen treated to standard ILC processing at 2 and 1.8K

Q ~ 9e10 @ 1.8K
3 times higher efficiency!
Where does the improvement originate? The reversal of $R_{BCS}(B)$

Previously unseen phenomenon!

Where does the improvement originate? The reversal of $R_{BCS}(B)$

Previously unseen phenomenon!

So far, our understanding of it

- BCS is lowered with lower mean free path:
 - EP, BCP → clean limit, high BCS, little to no field dependence
 - In the 120C bake case mfp near surface ~ 2nm (→ lower BCS at low field, BUT dirty limit, field dependence of the gap causes slope
 - Nitrogen/Argon treated: intermediate purity! Near surface ~ 40 nm → minimum of BCS at low field, but reverse field dependence unclear, maybe intrinsic?

M. Checchin, calculated in two fluid model approx

SIMS results showing 10 times higher than typical nitrogen concentration
Q ‘preservation’ in a real machine
HZB studies of trapped flux due to thermocurrents

Influence of thermal cycling on R_{surf}

- $R_{\text{res}} = 13.2 \text{ n}\Omega$
- $R_{\text{res}} = 5.4 \text{ n}\Omega$
- $Q_0 = 1.5 \times 10^{10}$
- $Q_0 = 2.7 \times 10^{10}$
- 4 MV/m

Thermocurrents

- Cavity forms thermoelement
- Different Seebeck coefficients for Nb and Ti

$U_{\text{thermo}} = (S_{\text{Niobium}} - S_{\text{Titanium}}) \cdot \Delta T$

Kugeler et al, talk presented at SRF 2013
Cornell studies of minimization of trapped flux in cryomodule

N. Valles – High Q Cavity Operation in the Cornell HTC – TTC Topical Meeting on CW-SRF 2013

Initial Cooldown at 16.2 MV/m

\begin{align*}
Q(2.0 \text{ K}) &= 2.5 \times 10^{10} \\
Q(1.8 \text{ K}) &= 3.5 \times 10^{10} \\
Q(1.6 \text{ K}) &= 5.0 \times 10^{10}
\end{align*}

10 K thermal cycle at 16.2 MV/m

\begin{align*}
Q(2.0 \text{ K}) &= 3.5 \times 10^{10} \\
Q(1.8 \text{ K}) &= 6.0 \times 10^{10} \\
Q(1.6 \text{ K}) &= 10.0 \times 10^{10}
\end{align*}
Conclusions

• Tremendous progress in understanding and finding of new cures in the last two years, since high Q effort started

• The doping with interstitials discovery shows that Nb is NOT at the end of the road! And that new exciting horizons are open for the SRF technology!

• R&D largely pays off, with relatively small effort we have already produced results which translate into huge savings for SRF based accelerators planned worldwide
The FNAL work presented comes from a team effort:

Thanks to R.D.Kephart and V.Yakovlev for their strong support of the high Q program at FNAL