BUNCH LENGTH DETECTOR BASED ON X-RAY PRODUCED PHOTOELECTRONS

P.N. Ostroumov
A. Barcikowski, S. Kondrashev, J.A. Nölen, ANL, Physics Division, USA
A. Delannoy, GANIL, Caen, France

Particle Accelerator Conference, May 3-8, 2009
Content

- Motivation
- Properties of X-rays produced due to the interaction of proton/ion beams with material
- Bunch length detector based on X-ray produced photoelectrons
 - Principle of operation
 - Photocathode
 - Registration of photoelectrons
- Experimental results, bunch shape of ion beams
- Possible modifications of the detector for application in high-power accelerators
Motivation

- Stripping of heavy-ion beams in high-power driver accelerators
 - Time focus of the bunched beam on the stripper results in the lowest longitudinal emittance growth
 - Application:

FRIB – Facility for Rare Isotope Beams

- X-BLD for application in high-power proton, H-minus accelerators
 - Does not require wire or target permanently inserted into the beam. A gas flow can be used
 - Bunch longitudinal profile can be monitored on-line which is not possible using conventional methods
Properties of X-rays from the target

K-SHELL IONIZATION IN HEAVY-ION COLLISIONS

W. E. Meyerhof

10^{-19} sec. On the other hand, typical decay times for K-shell vacancies are of the order of $10^{-10}/Z^4$ sec (27), which for Br is $\sim 10^{-16}$ sec. Since the outer electrons

- Potentially can provide resolution of several picoseconds
- Intensity of K-shell X-rays is 2 order of magnitude higher
- For test purpose at low-intensity ion linac we use copper target
- For high-intensity beams: use, for example, xenon gas flow
X-ray based bunch length detector: principle of operation

[Diagram showing the components and principles of operation of the X-ray based bunch length detector.]

- **Electron detector**
- **Slit 2**
- **RF deflecting plates**
- **Grounded slit**
- **X-ray photocathode**
- **Slit 1**
- **Ion, proton or H⁻ beam**
- **Target – stripping foil or pulsed gas jet**
Photocathode

Back-surface secondary electron quantum yield for a 1020-Angstrom CsI transmission photocathode

- The best response of the photocathode is with 1 kV X-Ray
Photocathode – Properties of photoelectrons

Energy distribution of the photoelectrons:

Photoelectron energy distribution for CsI photocathode excited by X radiation with an energy of 277 eV.

- the both distributions are almost the same with a peak at 0.5 eV
- nearly the same width at half maximum.
- 80% of the photoelectrons are below 2 eV.
Trajectory of photoelectrons

- X-ray source
- Photocathode
- Electron trajectories
- Collimator
- Potential contours
- Deflector (focusing) plates
- Beam
X-ray based BLD (Argonne National Laboratory)

- General view of the X-BLD installed at the ATLAS facility. 1 – target translator, 2 – target, 3 – photocathode assembly, 4 – RF deflector, 5 – detection unit, 6 – CCD-camera.
Commissioning of the detector

- The slit downstream of the photocathode was too wide (1 mm)
 - Reduced to 0.15 mm
- Stray magnetic field steers 10 kV electrons
 - Shielding against magnetic field
- RF frequency of the deflector is 97 MHz and is driven by the Accelerator master oscillator
- Improve the optics of the BLD to obtain better focusing on the phosphor screen, additional electrostatic steering and focusing was added
 - With 0.15 mm slit additional focusing and steering is not required
- Primary ion beam must be tuned to avoid losses on the walls
 - Can produce X-rays on the walls which increases the background
- Chevron MCP
 - Very good amplification, up to 10^8
 - Problem: Narrow dynamic range, Dynamic range depends from amplification
- Most problems due to very low intensity of primary beam in our facility
 - Beam current is below 0.5 μA
Electron beam image on the phosphor with no RF applied

- We installed a slit (0.15 mm) downstream of the photocathode.

Focused electron beam profile: Resolution is ~5 pixels = 0.4 mm

Graph showing intensity versus pixel position with a peak intensity at 300 pixels. The intensity scale is in arbitrary units. The image shows a narrow, elongated bright spot with a length labeled as 40 mm.
Oxygen beam (~1.6 MeV/u, 9 MeV/u, 0.2 to 0.5 μA)

Longitudinal profile, Oxygen, I=25 pnA

Detected location

ECR PII Booster
Bunch Length Detector based on secondary electrons

- Very well established technology for proton, H-minus, ion linacs
- Requires a wire biased to -10 kV to produce and accelerate secondary electrons
- Limited beam pulse length (~50 to 150 μsec) and beam repetition rate to avoid destruction of the wire
- Proton beam space charge and magnetic field can impact on electron trajectory – requires more studies for high current beams

Bunch Length Detector based on photoelectrons

- Can be used for on-line longitudinal profile measurements in very high-power accelerators
Use spectrometer to select X-rays produced by filling of K-shell vacancies (8-10 keV)

- Improve time resolution to <5 psec
High-power proton accelerators

Pulsed X-ray radiography of a gas jet target for laser–matter interaction experiments with the use of a CCD detector

Nozzle design to produce a gas jet

- 0.15 x 10 mm slit grounded
- slit at -10 kV
- RF deflecting plates
- x-ray photocathode
- X-ray Spectrometer
- X-ray collimator
- Proton beam
- Gas jet or microparticles (pulsed)

Fig. 2. Schematic diagram of the nozzle set-up to produce gas jet targets.
Summary

- We have developed and tested an X-ray based Bunch Length Detector (X-BLD) for application in ion accelerators.
- The sensitivity of X-BLD is high enough to measure bunch length even for ion beams with quite low intensities such as 0.2 \(\mu \text{A} \).
- Temporal resolution of an X-BLD can be improved for high intensity ion beams by incorporation of an X-ray spectrometer into the device.
- An electron beam detection based on MCP-phosphor system has low dynamic range and requires improvement. Secondary Electron Multipliers are proven to be better option.
- High power proton and ion accelerators:
 - X-BLD can be applied for on-line monitoring of the bunch length. Requires either pulsed gas flow or dropping of micro-particles across the beam.
 - No thermal issues with the target.