Muon Capture for a Neutrino Factory (IDS) or a Muon Collider

David Neuffer
Cary Yoshikawa

May 2009
Introduction

- **IDS ν-Factory**
 - (International Design Study)
- **Front end**
 - bunch, rotate and cool

Baseline method

- **Constraints**
- “adiabatic buncher”
- ϕ-E rotate, cool

IDS example

- variations
- Latest versions

ν-Factory→μ$^+$-μ$^-$ Collider

- shorter buncher/rotator

rf problems

- options

Discussion
Neutrino Factory - IDS

International Design Study

- deliver Reference Design Report of a Neutrino Factory
 - detailed, with cost estimate

Neutrino Factory

- Proton Driver
 - 4MW, 50 Hz, ~10GeV p

- Target, Capture, Cool
 - $\pi \rightarrow \mu$, bunch, cool

- Acceleration
 - linac, RLAs, FFAG

- Storage/Decay rings
 - 2 baselines (~4000, ~7500km)

- Detectors
 - 50 kT detectors

- $>10^{21}$ µ-decays /SS /year

International Scoping Study

Solenoid lens capture

- **Target is immersed in high field solenoid**
- **Particles are trapped in Larmor orbits**
 - $B = 20T \rightarrow \sim 2T$
 - Particles with $p_{\perp} < 0.3 \frac{B_{\text{sol}} R_{\text{sol}}}{2} = 0.225 \text{GeV/c}$ are trapped
 - $\pi \rightarrow \mu$
 - Focuses both + and - particles
 - **Drift, Bunch and phase-energy rotation**
- Longitudinal capture, acceleration, and cooling:
 - Requires high gradient: $V' > \sim 10$ MV/m
 - $f > \sim 200$ MHz ??
 - Initial beam is ~ 1 m bunch, $\delta P \sim 500$ MeV/c
 - For cooling/acceleration need:
 - $P = \sim 200$ MeV/c, $\delta P/P \sim 10\%$, 0.3 m bunches
Drift ($\pi \rightarrow \mu$)
“Adiabatically” bunch beam first (weak 320 to 240 MHz rf)
$\Phi-E$ rotate bunches – align bunches to ~equal energies
- 240 to 202 MHz, 12MV/m
Cool beam 201.25MHz
$N_B = 10$ example

- **Drift from target ~60m**
 - Beam lengthens
 \[
 \delta (ct_i) = L \left(\frac{1}{\beta_i} - \frac{1}{\beta_0} \right)
 \]

- **Buncher (~30m)**
 - $N=10$
 - $P_0=280\text{MeV/c}$, $P_N=154\text{MeV/c}$
 - $330 \rightarrow 235 \text{ MHz}$
 - $V' = 0 \rightarrow 10 \text{ MV/m}$

- **Rotator (~35m)**
 - $N=10.08$ – continue to bunch
 - accelerate/decelerate bunches
 - $235 \rightarrow 202 \text{ MHz}, V' = 10 \text{ MV/m}$

- **Cooler (~80m)**
 - 201.25 MHz, ASOL lattice
 - 15MV/m in rf cavities
 - LiH or H_2 cooling
 - Captures both μ^+ and μ^-
Details of ISS implementation

- Drift -110.7m
- Bunch -51m
 - $P_0=280$, $P_{18}=154\text{MeV/c}$ $\delta N_V = 18$
 - 12 rf freq. (5 to 10 MV/m)
 - 330 MHz \rightarrow 230MHz
- ϕ-E Rotate - 54m
- 15 rf freq. 230 \rightarrow 202 MHz
 - $\delta N_V = 18.032$
 - 12MV/m
- Match and cool (80m)
 - $\varepsilon_{x,y}$: 0.018 \rightarrow 0.006m
- Captures both μ^+ and μ^-
 - ~ 0.1 $\mu/(10 \text{ GeV p})$
ISS Study Beam acceptance

- Method captures large initial longitudinal phase space
 - with relatively small dilution
- Initial Beam
 - $P_{\pi \rightarrow \mu}$ 75 to ~ 600 MeV/c,
 - $\Delta P = \pm 250$ MeV/c
 - $\sigma_{\text{bunch}} = \sim 1$ m rms
- Captured beam
 - 50+ bunches (~ 80 m long)
- Accepted bunches are
 - $\Delta P = \pm 20$ MeV/c
 - $\sigma_{\text{bunch}} = \sim 0.3$ m
- 0.2 $\mu^+/24$GeV p
 - both μ^+ and μ^-
Shorter Bunch train example N=10

- Reduce drift, buncher, rotator to get shorter bunch train:
 - 217m \Rightarrow 125m
 - 57m drift, 31m buncher, 36m rotator
 - Rf voltages up to 15MV/m ($\times 2/3$)

- Obtains $\sim 0.08 \, \mu/p_{8\text{GeV}}$ in ref. acceptance
 - similar to ISS baseline

- 80+ m bunch train reduced to < 50m
 - ΔN: 18 \rightarrow 10
Simulation Results: $N_B = 10$, H_2 cooling

Transverse emittance

μ/p (8GeV)

1.5 ZM
Adapt to Collider (2009 scenario)

- Need small number of bunches
 - High intensity
- Start with ν-factory front end
 - Use both μ^+ and μ^- bunch trains
- Cool and recombine
 - $12 \rightarrow 1$ bunch
 - $N_B = 7$ parameters

R. Palmer, TU1GRI03
Baseline: \(V' = 12 \text{MV/m in B=1.75T} \)

- Experiments show reduced gradients within magnetic field:
 - not quite at front end parameters
 - first test cavity

- May require changes in our parameters ...
 - \(V'_{\text{max}} \propto (f_{\text{rf}})^{1/2} \) ???

- Future experiments will explore these limits
 - D. Huang et al - TU5PFP032
Front end rf options

- **Lower-Gradient baseline**
 - 4 to 8MV/m ?
 - longer system

- **Cavity changes**
 - Open cell rf?
 - coatings/materials? Be, Al, ALD

- **Gas-filled cavities ?**
 - Suppresses breakdown
 - electrons/ions ?

- **Focusing Variants**
 - Lower B-field across cavities
 - "alternating solenoid"

- "magnetically insulated" cavity
 - fields similar to alternating solenoid
 - Beam dynamics OK
Conclusions

- High frequency (bunch, phase rotate, cooler) is well suited to neutrino factory scenarios
 - Study 2B/IDS designs
 - Produces trains of μ^+ and μ^- bunches for acceleration and storage (~ 80m trains)
 - Latest versions provide shorter trains (30 to 50m)

- Can use high-frequency capture to obtain bunch train for ν-Factory $\rightarrow \mu^+-\mu^-$ collider
 - (~10 to 14 bunches long at 200MHz)
 - Recombine after cooling for collider mode

- Questions
 - \sim12 MV/m at $B \approx 2T$ and $f \approx 200$MHz OK?
 - Is \sim12 bunches OK for Collider scenario?
Supplemental Slides
Need to develop best design for IDS

I made some improvements to your drawings and sent them for fabrication.

But don’t worry – I left your name on them so you’ll get all of the credit.

You don’t handle good news very well.

GAAA!!!

WAAAA!!!

Shoot me!
Shoot me!
Shoot me!
Adiabatic Buncher: φ-E rotation

- **Beam first drifts**
 - beam lengthens $\delta(c t_i) = L \left(\frac{1}{\beta_1} - \frac{1}{\beta_0} \right)$

- **Buncher**: Set rf phase to be zero for reference particles
 - Spacing is $N \lambda_{rf}$, $\lambda_{rf}(L) = \frac{\delta c t_{0N}}{N} = \frac{L}{N} \left(\frac{1}{\beta_N} - \frac{1}{\beta_0} \right)$
 - $\Rightarrow \lambda_{rf}$ increases
 - gradually increase rf gradient

- **Rotator**: rephase rf so that higher energy bunches accelerate, low energy bunches decelerate
 - Finish when bunch energies are aligned in E
 - match to 210 MeV/c, 201.25 MHz

- **Cooler**: Cool with absorbers +rf
 - Captures both μ^+ and μ^-