Longitudinal Shaping of Relativistic Electron Bunches with Applications to the Plasma Wakefield Accelerator

R. Joel England, M. Hogan *
G. Travish, J. B. Rosenzweig **

* Stanford Linear Accelerator Center
Advanced Accelerator Research Department
Menlo Park, CA

** University of California, Los Angeles
Particle Beam Physics Laboratory
Los Angeles, CA 90095

2009 Particle Accelerator Conference
May 7, 2009
Optimal Drive Beam Profile for Blowout Regime of PWFA

- PWFA: plasma wakefield accelerator
- electron beam-driven plasma waves
- acc. fields on order of multi-GeV/m
- acceleration of drive tail or witness bunch

Transformer Ratio:

\[E_+ = \text{acc. field}; E_- = \text{decc. field} \]

\[R = \frac{E_+}{E_-} = k_p L_z \]

\[R > 2 \quad \text{if} \quad L_z > 2k_p \]

Focus of this Talk

- Generation of electron beam with ramped current profile
- Temporal diagnostic with sub-ps resolution
 - transverse deflecting mode cavity
- Experimental verification of ramping mechanism
How Does a Dogleg Compress the Beam?

chicane

![Diagram of chicane]

higher-energy particles travel a shorter path

$$R_{56} = \frac{\partial z}{\partial \delta} > 0 \quad \text{“positive longitudinal dispersion”}$$

dogleg

![Diagram of dogleg]

higher-energy particles travel a longer path

$$R_{56} = \frac{\partial z}{\partial \delta} < 0 \quad \text{“negative longitudinal dispersion”}$$
Ramped Beam Mechanism

Artificial mathematical manipulation of a chirped particle distribution

$R_{56} = \frac{\partial z}{\partial \delta} < 0$

linear transformation: $z_f = z_0 + R_{56}\delta$

T_{566} arises from chromatic focusing errors in horizontally focusing quads and then grows in the subsequent drift sections (2nd order x-z correlation).

Solution: sextupole corrector magnets near the horizontally focusing quads.
Ramped Beam Mechanism

Artificial mathematical manipulation of a chirped particle distribution

\[z_f = z_0 + R_{56} \delta + T_{566} \delta^2 \]

\(T_{566} \) arises from chromatic focusing errors in horizontally focusing quads and then grows in the subsequent drift sections (2nd order x-z correlation). Solution: sextupole corrector magnets near the horizontally focusing quads.
- Is a “dogleg” or dispersionless translating section.
- Half-chicane with focusing elements between the bends.
- Can be operated in a nondispersive mode with symmetric beta function and 2π betatron advance.
- Like a chicane, may be used as a bunch-length compressor.
- Nominal first order temporal dispersion ($R_{56} = -5\text{cm}$) is suitable for beam-shaping.
- Sextupoles required to compensate 2nd order longitudinal dispersion.
Neptune Dogleg Compressor
PARMELA Simulation Results: 1000 particles, 300pC

Initial

Final: Sextupoles Off

Final: Sextupoles On

- 2D PIC Simulation
- 5 GeV/m gradients
- 6 nC drive beam w/ n_0=2e16 cm⁻³
Neptune Dogleg Compressor
PARMELA Simulation Results: 1000 particles, 300pC

\[\Delta \varepsilon_{x,N} = 9.9 \, \mu m + 12.7 \, \mu m = 22.6 \, \mu m \]

\[\varepsilon_{x,N} \text{(initial)} = 4.9 \, \mu m \]

Initial

Final: Sextupoles Off

Final: Sextupoles On

GUN PWT Pre-Focus sextupoles Final Focus
The UCLA Neptune Laboratory

Beam Charge: $100\text{pC} \rightarrow 500\text{pC}$

Beam energy: up to 15 MeV

Emittance: $\varepsilon_N = 4\text{ mm mrad}$

Power Source: 18 MW Klystron

RF Frequency: 2.856 GHz

Cathode laser: $60\mu\text{J at } \lambda = 266\text{ nm}$

Laser pulse length: $5-7\text{ ps RMS}$
Simulations predict “ramped” beam occurs near point of maximum compression (κ=1094 m$^{-3}$).
Empirical analysis assumes a gaussian profile, which is not necessarily the case here.
Theoretical curve obtained from PARMELA + ELEGANT simulation, with autocorrelation algorithm.

- Martin-Puplett CTR Interferometer
- Bunch length measurement by autocorrelation.
- Sub-picosecond resolution obtainable.

PARMELA gun and linac 5000 macroparticles
ELEGANT prefocus and s-bahn 60% collimation
MATHEMATICA 1.interferogram reconstruction 2.triple-gaussian fit procedure
Coherent Transition Radiation Measurements of Compression

\[\sigma_T(\text{ps}) \]

- Martin-Puplett CTR Interferometer
- Bunch length measurement by autocorrelation.
- Sub-picosecond resolution obtainable.

\[\kappa = 0 \text{ m}^{-3} \quad \kappa = 1094 \text{ m}^{-3} \quad \kappa = 1641 \text{ m}^{-3} \quad \kappa = 2735 \text{ m}^{-3} \]
A Better Temporal Diagnostic
Deflecting Mode Cavity

Lowest dipole mode is TM_{110}
Zero electric field on-axis (in pillbox approx.)
Deflection is purely magnetic
Polarization selection requires asymmetry

\[
\begin{align*}
E_z &= E_0 J_1(\kappa r)e^{i\phi}; \\
B_r &= B_0 \frac{J_1(\kappa r)}{\kappa r} e^{i\phi}; \\
B_\phi &= iB_0 J'_1(\kappa r)e^{i\phi};
\end{align*}
\]

\[
\begin{align*}
x' &= \frac{\pi f_{RF} L_B \sqrt{2P_{RF} R_\perp}}{cE/e} \\
x_B &= \frac{\pi f_{RF} LL_B \sqrt{2P_{RF} R_\perp}}{cE/e}
\end{align*}
\]

Pillbox Fields

on axis
\[\kappa r = 0\]

\[
\begin{align*}
E_z &= 0; \\
B_x &= \frac{B_0}{2}; \\
B_y &= i\frac{B_0}{2};
\end{align*}
\]
Deflecting Mode Cavity
Power and Resolution

Screen deflection: $\sigma_{x,f} = \sqrt{\sigma_0^2 + \sigma_{\text{def}}^2}$
$\sigma_{\text{def}} = 2\sigma_z L \frac{\pi V_{\perp} f}{c U / e}$

$V_{\perp} >> V_{\text{min}} = \frac{\sigma_{x,0} U / e}{L \pi \sigma_{t,f}}$
$\sigma_{t,\text{min}} = \frac{\sigma_{x,0} U / e}{L \pi V_{\perp} f}$

$V_{\perp,\text{design}} = 3V_{\text{min}} = 545kV$
$\sigma_{t,\text{min}} = 545fs$

$\sigma_{x,f}$ = beam size at screen with deflector on;
$\sigma_0 = 0.3mm$ = beam size at screen with deflector off;
$L = 43cm$ = drift from deflector to screen;
$f = 9.6GHz$ = RF frequency;
V_{\perp} = deflecting voltage;
$R_{\perp} = 820k\Omega$ = transverse shunt impedance per cell;
P_{in} = input RF power;
$U = 12MeV$ = electron beam energy;
ϕ_0 = deflector injection phase = 0;
$\sigma_{t,\text{min}}$ = minimum resolvable rms bunch length;
$\Delta x = 30\mu m$ = spatial resolution of screen & optics;
Δt = effective temporal resolution of deflector;

\[\Delta t = \frac{\sigma_0 U / e}{L \pi f R_{\perp}^{1/2} \sqrt{n P_{\text{in}}}} \]

Resolution vs. Power: 9.6 GHz

9 cells; 50 kW; 400 fs resolution
Overview of Design Process

- **Cold Test Prototype**
 - Aluminum 9-cell
 - 9.3 GHz
 - Cold-test only
 - Clamped
 - No polarization separation

- **Steel Prototype**
 - Steel with Cu coating 9-cell
 - 9.5 GHz
 - Cold-test only
 - Cf flange design
 - No polarization separation

- **Final Design**
 - GlidCop Al-15 9-cell
 - 9.59616 GHz
 - Tested up to 50 kW peak pwr
 - Conflat flange design
 - Edm’ed polarization holes
Deflecting Cavity Animations

H-field complex magnitude

H-field vector plot
Deflecting Cavity: Polarization Separation

• Rods give larger mode separation but shift the desired mode too much
• Holes give less mode separation but don’t perturb the desired mode.
• In final design, holes used with radius reduced to 1 mm, giving a mode separation of 1 MHz.

- Undesired: +1358 MHz
- Desired: +53 MHz
- Undesired: -7 MHz
- Desired: -2 MHz

hole/rod radius = 2 mm
Final Cavity Design

- 9-cell standing wave structure
- center-fed input RF
- reconditioned VA-24G klystron
- no brazing between cells
- cells are stacked CF vacuum flanges

x-band klystron (50 kW peak)

CAD drawing of stacked cells

one cell with polarization holes
S-Band/X-Band RF System

- S and X-Band frequencies are multiples of modelocker freq of drive laser
- Ensures phase stability of gun, linac, laser, and deflector
Bead Pull Results

After brazing input coupler

- Bead pull using aluminum bead
- Data proportional to $|E|^2$ and $|H|^2$
- Field flatness $\sim \pm 5\%$
- Data taken at room temp (24°C)

Field flatness $\sim 10\%$

$f_0 = 9.60084$ GHz; $\Delta f = 1.5$ MHz
$\beta = 0.870$; VSWR = 1.15
$Q_L = 6359$; $Q_0 = 11889$; $Q_e = 13672$
Temperature Tuning

Frequency vs. Temperature
- using heater tape and thermocouple
- PID temperature feedback control
- dots are measured data
- solid lines are linear fits
- \(\frac{df}{dT} = -179 \text{ kHz/}°\text{C} \)

\(f_0 = 9.596 \text{ GHz} ; \Delta f = 1.5 \text{ MHz} \)
\(\beta = 1.036 ; \text{VSWR} = 1.03637 \)
\(Q_L = 6638 ; Q_0 = 13043 ; Q_e = 13517 \)

Reflectance vs. Temperature
- dots are measured data
- solid lines are interpolations
- at optimal freq in vacuum (9.59616 GHz), cavity is slightly overcoupled (-35 dB @ 62 C)
- therefore operating \(\beta = 1.036 \) in vacuum
High Power RF Measurements

- oscilloscope traces for several attenuation settings
- measured on deflecting cavity waveguide power coupler
- maximum forward power level is 50 kW
Experimental Setup

- pop-in faraday cup / 1” YAG
- YAG = yttrium aluminum garnet

Faraday Cup Calibration

\[y = 4.566x + 0.9899 \]
Deflection vs. RF Phase

- Solid curve = sine function fit
- Amplitude = $eV_0 L/p_0 c = 5.5$ mm

$$y_{cen} = \frac{eV_0 L}{p_0 c} \sin(\phi_0)$$

<table>
<thead>
<tr>
<th>Method</th>
<th>Forward Power (kW)</th>
<th>V_0 (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Scan</td>
<td>9.6 kW</td>
<td>232</td>
</tr>
<tr>
<td>RF (50 Ω termination)</td>
<td>12.75</td>
<td>267</td>
</tr>
<tr>
<td>RF (1 MΩ termination)</td>
<td>12.15</td>
<td>261</td>
</tr>
</tbody>
</table>

- Comparison with RF values
- Calibrated crystal detector
- Assumption: shunt impedance = 5.6 MΩ (sim. value)
Deflecting Cavity: Uncompressed Beam

- beam is on-crest in linac (no chirp)
- therefore not compressed in dogleg
- beam appears asymmetrical
- somewhat long pulse
- a lot of structure in the tail
- in some streaks, it is more pronounced
- structure related to nonlinear xtals (?)

\[\sigma_t = 5.9 \text{ ps} \]

- FWHM = 28.8 ps (IR)
- doubling xtals (factor of 2)
- FWHM = 14.4 ps (UV)
- \(\sigma_{\text{rms}} \sim 7 \text{ ps} \)
Deflecting Cavity: Compressed Beam

- chirped 20° in linac, 234 pC of charge at 11.8 MeV with $V_0 = 400 \text{ kV}$
- residual horizontal dispersion produces pseudo-phase space reconstruction
- combination of linear and nonlinear effects (R_{16} & T_{166})
- ramping mechanism clearly visible
- due to asymmetry of initial pulse, overcompensation with sextupoles needed

ELEGANT Simulation

“streak” in x,y z phase space current profile

Gaussian beam

sextupoles: 0 m$^{-3}$

sextupoles: 602 m$^{-3}$

sextupoles: 903 m$^{-3}$

sextupoles: 1204 m$^{-3}$

Asymmetric (front-heavy) beam

sextupoles: 0 m$^{-3}$

sextupoles: 1094 m$^{-3}$

sextupoles: 1641 m$^{-3}$

sextupoles: 2188 m$^{-3}$
ELEGANT Simulation

“streak” in x, y, z phase space, current profile

“streak” in x, y, z phase space, current profile

Gaussian beam

Asymmetric (front-heavy) beam

sextupoles: 0 m$^{-3}$

sextupoles: 0 m$^{-3}$

sextupoles: 602 m$^{-3}$

sextupoles: 1094 m$^{-3}$

sextupoles: 903 m$^{-3}$

sextupoles: 1641 m$^{-3}$

sextupoles: 1204 m$^{-3}$

sextupoles: 2188 m$^{-3}$
Future Applications
Witness Beam Generation

For PWFA application, drive beam needs a witness beam to accelerate.

Region of high dispersion in x
Strong correlation b/w x and z
Insert mask in x to sever beam in z

No mask inserted
Undercorrected with sextupoles to elongate profile

With 1cm mask inserted at above location

- Witness beam
- Ramped drive beam
Future Applications
Tailored Profiles for FACET?

- dogleg: $R_{56} = -7\text{cm}$
- reduce chicane compression to increase bunch length to $\sim 2\, k_{p}^{-1}$
- collimate to remove low-energy tail
Conclusions

• Proposal:
 - ramped beams: improved transformer ratio ($R > 2$) for PWFA applications
 - feasible using dogleg compression with sextupoles
 - deflecting cavity diagnostic (500 fs resolution)

• Deflecting cavity
 - final cavity design finalized in 3-phase process w/ 2 prototypes
 - cavity testing indicates that it operates within the design specifications
 - high power RF testing: no breakdown problems observed

• Experimental tests:
 - unchirped (uncompressed) beam has asymmetric structure
 - chirped beam w/residual dispersion = semi-tomographic reconstruction
 - evidence for ramp-shaped electron beams

• Other Experiments:
 - deflector use for measuring optimized charge distributions
 - dogleg high-brightness focus studies
 - witness bunch generation
Acknowledgements

Laser-Plasma Group
Chan Joshi
Sergei Tochitsky
Jay Sung
Chris Clayton

UCLA Particle Beam Physics Lab
James Rosenzweig
Brendan O’Shea
Joris Fourrier
Claudio Pellegrini
Pietro Musumeci
Oliver Williams

UCLA Physics Staff
Christine Green
Harry Lockart
Jim Kolonko
Teresa Wheeler
Penny Lucky

Matt Thomson
Scott Anderson
Rodney Yoder
Pedro Frigola
Gerard Andonian
Alan Cook
Mike Dunning
.... and many more
Introduction: The RF Photoinjector

- Acceleration from rest to relativistic energies (~1 to 10 MeV)
- Temporal structure of electron beam reflects that of laser pulse on the cathode.
- Capable of producing low-emittance beams.
- Emittance: figure of merit; measure of area occupied by beam distribution in transverse phase space.

\[\varepsilon_{x,N} = \frac{1}{mc} \sqrt{\langle p_{x}^{2}x^{2}\rangle - \langle p_{x}x\rangle^{2}} \approx \sqrt{\varepsilon_{x,th}^{2} + \varepsilon_{x,rf}^{2} + \varepsilon_{x,sc}^{2}} \]

thermal emittance: \[\varepsilon_{x,th} \propto \sigma_{x} \]

RF emittance: \[\varepsilon_{x,rf} \propto \sigma_{x}^{2} \sigma_{z}^{2} \]

space charge emittance: \[\varepsilon_{x,sc} \propto \frac{1}{\sigma_{z}} \]

- Trade-off between rf and sc components
- Implies optimal pulse length \(\sigma_{z} \).
- Generally determined by photoinjector codes (e.g. PARMELA, HOMDYN)
- Typical \(\sigma_{z} \sim 10 \) degrees of RF phase
- For S-Band (2.856 GHz) 10 deg \(\sim 10 \) ps
Beam Brightness

\[B_\perp = \frac{I}{\varepsilon_{x,N}^2} \quad I \propto \frac{Q}{\sigma_z} \]

\[Q_{\text{max}} \approx \frac{2}{5} \pi \sigma_x^2 \varepsilon_0 E_0 \]

- “brightness”: measure of density of particles in transverse phase space.
- emittance constrained by photoinjector: \(\varepsilon_N > 1 \, \mu m \)
- \(\sigma_z \) constrained (\(\sim 10 \) deg of RF phase) to minimize \(\varepsilon_N \)
- \(Q \) constrained by cathode image charge limit

\[B_{\perp,\text{opt}} = 16(2\pi)^{9/2} \alpha k \frac{I_A [1 + \frac{3}{5} A]^2}{\sigma_z A^2} \]

\(\alpha = 1.5; \lambda = 10\text{cm}; A = 1; I_A = 16\text{kA}; \sigma_z = 3\text{mm} \)

\[B_{\perp,\text{opt}} = 80 \, \text{A/\mu m}^2 \]
Bunch Compression Techniques

RF Techniques
- Phase Space Rotation
- Ballistic Compression

Magnetic Techniques
- Chicane
- Other Nonisochronous Devices (e.g. dogleg compressor)
Applications for High Brightness Beams

Free electron laser
- high gain regime
- minimize the gain length L_g

$$L_g = \frac{\lambda_w}{2\sqrt{3}\pi \rho} \quad \rho \propto \omega_p^{2/3} \propto n_e^{1/3}$$

Inverse Compton Scattering
- beam + laser (hv) ---> higher hv* photons
- shortness of scattered pulse limited by shortest of beam, laser

$$N_{ph} = L\sigma_T \quad \mathcal{L} \propto \frac{N_e}{A_{int}}$$

Plasma Wakefield Accelerator:
- beam + plasma --> high-gradient wakes
- beam density, time profile important

$$E_{\text{max}} = E_0 1.3 \Lambda \ln(1 / \sqrt{\Lambda / 10}) \quad n_{\text{beam}} >> n_0$$

$$\Lambda = (n_{\text{beam}} / n_0) k_p^2 \sigma_r^2$$
Further Applications: Deflecting Cavity
Dynamically Optimized Beam Profiles

Beam Charge: 0 to 50 pC
Beam energy: up to 4 MeV
Power Source: 18 MW Klystron
RF Frequency: 2.856 GHz (S-Band)
Cathode laser: 10 µJ at λ = 266 nm
Laser pulse length: 50 fs RMS

• observed compression when running off-energy by 0.76%
• however, for negative chirp, dogleg should expand, not compress

\[z_f = z_0 + R_{56} \delta + T_{566} \delta^2 \]

off energy by \(\Delta = -0.76\% \)

\[\hat{R}_{56} \approx R_{56} + 2T_{566} \Delta \]

\[z_f = z_0 + \hat{R}_{56} \hat{\delta} + \hat{T}_{566} \hat{\delta}^2 \]

+18 cm

-0.4 cm -10m (!)

sextupoles used to remove \(T_{566} \)

Further Applications: Doglegs
SLAC - ORION Low-E Hall Dogleg

- studies for PWFA / general transport
- large energy spread requires octupole correction

initial beam no sextupoles with sextupoles sext’s + oct’s

PowerTrace 1.08 Simulation

PMQs (110 T/m)

- ELEGANT Simulation Result
- Hybrid Permanent Magnet and Iron
- Grey cubes are Alnico; M=1.175 T
- Field gradient: $B'=110$ T/m; $B''=-0.002$ T/m
- Bore diameter: 8mm
- Benefits: cheaper, better field profile
- Downsides: small bore; in-vacuum

$$B \approx \frac{2Q}{\sigma_i} \frac{\varepsilon_{N,x}}{\varepsilon_{N,y}} = 412 mA / \mu m^2$$