SELF-SUSTAINING SECONDARY EMISSION IN MAGNETRON GUNS,
BEAM MODULATION AND FEEDBACKS

A. V. Agafonov†, Lebedev Physical Institute, Moscow, Russia
V. M. Fedorov, V. P. Tarakanov, High Energy Density Research Center, IVTAN, Moscow, Russia

Abstract
Problems of magnetic insulation violation inside a vacuum coaxial diode with dense electron flow are considered. The numerical model of nonstationary nonuniform secondary electron emission provoked by primary low-intensity beam from a cathode was developed. The results of computer simulations of electron cloud formation due to nonlinear azimuthal instability under the condition of strong nonuniform secondary self-sustaining emission are described. The existence of an instability with transverse quasistationary leakage current of a few percent of Child-Langmuir current and rotating states of electron flow has been shown under conditions of conservation of full power and full momentum of the system. Emphasised is the dominant influence of a feedback on dynamics of electron beam modulation and on arising transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. Strong azimuthal instability exists if the current of primary beam is much less than the secondary emission current. If these currents are comparable, the instability is weak and decays in time due to the absence of strong azimuthal inhomogeneity of secondary emission current. In the case of the emission of primary beam alone (secondary emission absent), deep modulation and leakage current arises only if the condition of saturated regime of a cathode is satisfied. Such behaviour is conditioned by a feedback on the emitting surface similar to the case of nonuniform secondary emission which provides additional correct azimuthal modulation of electron flow by rotating crossed ExB-field and amplifies the instability. No azimuthal instability is observed if the current of primary beam is space-charge limited. The results of 2.5-D and 3-D computer simulations are presented.

1 INTRODUCTION
This paper reports on computer simulations of an electron cloud formation inside a smooth-bore magnetron. Preliminary results were published in [1 – 3]. Computer simulations have been performed using 2.5D and 3D electromagnetic PIC code KARAT [4]for the magnetron diode (MD) with parameters close to experimental [5], and with an external voltage source \( V_0(t) \) connected to MD via an RL-circuit. The yield of secondary electrons from the cathode takes into account the dependence of the yield on the energy of electrons and the angle between the direction of electron velocity and the perpendicular to the cathode surface, and also the threshold of secondary emission.

2 DYNAMICS OF SELF-SUSTAINING SECONDARY EMISSION BEAM IN MD
The main parameters of MD are: radius of the anode \( r_A = 0.53 \) cm, radius of the cathode \( r_C = 0.33 \) cm; external longitudinal magnetic field \( B_0 = 2.5 \) kG \( (B_0/B_r \simeq 1.15, \omega_{ec}/2\pi = 7 \text{ GHz} \), period of cyclotron rotation 0.14 ns); the voltage rise time to maximum value of \( V_{0m} = 12 \) kV was varied from 2 to 10 ns; maximum emission current of the primary beam \( I_{m} = 3 \) A. For given voltage and geometry of MD the Child-Langmuir current through the MD without a magnetic field equals approximately \( I_{CL} \simeq 200 \) A (here and below currents and charge densities correspond to linear values per cm of length in the longitudinal direction). Electrotechnical parameters are \( \tau_{CL} = 0.25 \) ns, \( \tau_{RC} = 0.24 \) ns, where \( C \) is the capacitance of MD. Drift velocity of electrons in crossed fields is \( \bar{v}_{cl} = c E_0/B_0 = 2.4 \times 10^7 \) cm/s, if the electric field is estimated as \( V_{AK}/d_{AK} \).

The process of electron cloud formation inside an asymmetrical MD under the condition of homogeneous initial emission of low current primary beam from a cathode starts due to inevitable presence of electric field fluctuations in rotating flow of electrons stored inside the gap for the time of the growth of the external voltage. Weak azimuthal instability is amplified by nonuniform secondary emission and a feedback on the surface of the cathode. Under conditions of conservation of full energy and momentum a part of the electrons lose energy under the action of the field and drifts to larger radii towards the anode. Another part of the electrons increases its energy and returns to the cathode with an energy exceeding the threshold value for secondary emission. In view of indicated reasons, the emission of secondary electrons is nonuniform. This effect leads to an intensification of the cathode backbombardment process and to fast and effective growth of secondary electrons inside MD. The secondary-emission current exceeds the primary-beam current by more than an order of magnitude and subsequently exerts a determining action on the operation of the MD. The MD passes over to a condition of self-sustaining emission and the primary beam could be switched off. After the transient process, a stable formation consisting of several bunches is formed in this geometry. Electron clouds rotate as a whole with...
approximately constant angular frequency.

The feedback on the surface of the cathode exerts the dominant influence on the growth of the instability and on arising of a transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. This feedback is conditioned by right phasing of a part of secondary emitted electrons by rotating crossed E×B-field. These electrons are captured inside rotating modulated electron flow and stay inside the gap for many revolutiones around the cathode, maintaining its azimuthal and time structures. Another part of secondary emitted electrons can stay inside the gap only for a small time comparable with the period of cyclotron motion because they are forced to return to the cathode by the radial component of rotating crossed E×B-field, which changes its direction during the rotation of the flow as a whole.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.

The feedback on the surface of the cathode exerts the dominant influence on the growth of the instability and on arising of a transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. This feedback is conditioned by right phasing of a part of secondary emitted electrons by rotating crossed E×B-field. These electrons are captured inside rotating modulated electron flow and stay inside the gap for many revolutiones around the cathode, maintaining its azimuthal and time structures. Another part of secondary emitted electrons can stay inside the gap only for a small time comparable with the period of cyclotron motion because they are forced to return to the cathode by the radial component of rotating crossed E×B-field, which changes its direction during the rotation of the flow as a whole.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.

The feedback on the surface of the cathode exerts the dominant influence on the growth of the instability and on arising of a transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. This feedback is conditioned by right phasing of a part of secondary emitted electrons by rotating crossed E×B-field. These electrons are captured inside rotating modulated electron flow and stay inside the gap for many revolutiones around the cathode, maintaining its azimuthal and time structures. Another part of secondary emitted electrons can stay inside the gap only for a small time comparable with the period of cyclotron motion because they are forced to return to the cathode by the radial component of rotating crossed E×B-field, which changes its direction during the rotation of the flow as a whole.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.

The feedback on the surface of the cathode exerts the dominant influence on the growth of the instability and on arising of a transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. This feedback is conditioned by right phasing of a part of secondary emitted electrons by rotating crossed E×B-field. These electrons are captured inside rotating modulated electron flow and stay inside the gap for many revolutiones around the cathode, maintaining its azimuthal and time structures. Another part of secondary emitted electrons can stay inside the gap only for a small time comparable with the period of cyclotron motion because they are forced to return to the cathode by the radial component of rotating crossed E×B-field, which changes its direction during the rotation of the flow as a whole.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.

The feedback on the surface of the cathode exerts the dominant influence on the growth of the instability and on arising of a transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. This feedback is conditioned by right phasing of a part of secondary emitted electrons by rotating crossed E×B-field. These electrons are captured inside rotating modulated electron flow and stay inside the gap for many revolutiones around the cathode, maintaining its azimuthal and time structures. Another part of secondary emitted electrons can stay inside the gap only for a small time comparable with the period of cyclotron motion because they are forced to return to the cathode by the radial component of rotating crossed E×B-field, which changes its direction during the rotation of the flow as a whole.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.

The feedback on the surface of the cathode exerts the dominant influence on the growth of the instability and on arising of a transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. This feedback is conditioned by right phasing of a part of secondary emitted electrons by rotating crossed E×B-field. These electrons are captured inside rotating modulated electron flow and stay inside the gap for many revolutiones around the cathode, maintaining its azimuthal and time structures. Another part of secondary emitted electrons can stay inside the gap only for a small time comparable with the period of cyclotron motion because they are forced to return to the cathode by the radial component of rotating crossed E×B-field, which changes its direction during the rotation of the flow as a whole.

The regime of self-sustaining secondary emission in MD is characterized by the average radial component of electric field on the cathode surface, which is close but not equal to zero. At given azimuth of the cathode surface it oscillates with a frequency equal to the average rotating frequency of the flow as a whole times the number of bunches, and with amplitudes varying from -10 up to 30 — 40 kV/cm.

Note that strong azimuthal instability occurred only if the current of primary beam is small in comparison with the full current of self-sustaining secondary emission.

Fig. 1 (top) shows stable configuration of electron flow inside the MD with secondary emission cathode.
3 DYNAMICS OF PRIMARY BEAM AND 
OF MIXED SECONDARY AND 
PRIMARY BEAMS IN MD

Investigation of an instability of pure primary beam of different currents up to space-charge limited current homogeneously emitted from a cathode of MD (an MD with a thermionic cathode without secondary emission) shows that under condition of space-charge limited current no azimuthal instability occurs. Deep azimuthal modulation of the flow and leakage current to the anode arises only if the condition of saturated regime (normal component of electric field does not equal zero) of a cathode is satisfied. The behaviour is conditioned by the same feedback on the emitting surface providing additional correct azimuthal modulation of emitted particles similar to the case of secondary emission. The difference is that the radial electric field does not change its direction on the surface of the cathode, but oscillates with large amplitude. In the middle of Fig. 1 stable configuration of the flow of primary electrons inside the MD without secondary emission and the cathode operating in the saturated regime are shown. The bottom figure shows stable configuration for the case of space-charge limited current of primary electrons. In the middle and in the bottom pictures of Fig. 2 dynamics of store of primary $N_0$ inside MD are shown for aforementioned cases. The time behaviour of radial electric field near the surfaces of the cathode for aforementioned cases is shown in Fig. 3.

In the case when the current of primary beam is comparable with the current of secondary-emission beam the behaviour of the electron flow for later time is similar to the case of space-charge limited primary beam. The charge of primary beam emitted homogeneously from the cathode influenced the character of secondary emission and smooths over a nonuniformity of secondary emission due to additional suppression of radial electric field on the cathode surface. Secondary-emission current increases initially and then drops to a value which provides the fall of radial electric field on the cathode surface to close to zero. Azimuthal modulation of the flow and leakage current to the anode do not exist in this case. However, they arise for a time if the current of primary beam decreases approximately by an order of its initial value.

4 3D COMPUTER SIMULATION

Presented above results obtained for 2-dimensional $r-\theta$ geometry of the system. Results of 3D calculations have confirmed all main physical mechanisms and conclusions of 2D calculation. The transverse leakage current drops sharply when $B_o/B_{cr} \geq 1.4$ and longitudinal leakage current prevail.

5 CONCLUSION

Emphasised is the dominant influence of a feedback on dynamics of electron beam modulation and on arising transverse leakage current to the anode across the external magnetic field exceeding the critical magnetic field of magnetic insulation. The instability arises due to an energy and a momentum exchange between particles and rotating crossed azimuthally modulated $E \times B$-fields. Strong azimuthal instability exists if the current of primary beam is much less then the secondary emission current. If these currents are comparable, the instability is weak and decays in time due to the absence of strong azimuthal inhomogeneity of secondary emission current. In the case of the emission of primary beam alone deep modulation and leakage current arises only if the condition of saturated regime of a cathode is satisfied. Such behaviour is conditioned by a feedback on the emitting surfaces which provides additional correct azimuthal modulation of electron flow by rotating crossed ExB-field and amplifies the instability.

6 REFERENCES