HYBRID COMPUTATION OF NORMAL MODE TUNE SHIFTS IN ROUNDED-RECTANGULAR PIPES

V. Galdi, D.I.I.I.E. - Univ. of Salerno, I-84084 Fisciano (SA), Italy
S. Petracca† †, and I. M. Pinto, Univ. of Sannio at Benevento, I-82100 Benevento, Italy

Abstract
A fast and accurate hybrid (analytical-numerical) technique for computing the normal mode tune-shifts in rounded-rectangular (stadium) pipes is introduced based on Galerkin method together with a smart representation of Poisson’s equation Green’s function in a rectangular domain. Comparison with standard finite-elements and finite difference methods shows that our method is faster and more accurate, requiring no numerical differentiation.

1 THE PROBLEM
Many beam-pipe cross-section geometries of potential interest for accelerators, including the stadium-shaped one recently proposed for LHC [3], differ from the rectangle only by the rounding of corners, or the substitution of straight sides with circular arcs. Computing the related betatron tune-shifts, resulting from collective (space-charge and image) effects is a key problem to prevent resonant betatron excitations leading to potentially harmful beam instabilities. The normal mode coherent and incoherent tune-shifts can be written in terms of the normal mode Laslett coefficients \(\epsilon \) as follows [2]:

\[
\Delta \nu = -\frac{N R r_0}{\pi \nu / a_0} L^2 \epsilon,
\]

where:

\[
\epsilon_{1,2} = \frac{L^2}{16 \Lambda} \left\{ \frac{\delta_y \partial_x \Phi^{(im)} + \delta_x \partial_y \Phi^{(im)}}{2} \right. \\
\left. + \left[\left(\delta_y \partial_y \Phi^{(im)} - \delta_x \partial_x \Phi^{(im)} \right) \right] ^2 \right. \\
\left. + \delta_x \partial_x \Phi^{(im)} \delta_y \partial_y \Phi^{(im)} \right\}^{1/2},
\]

\(\Phi^{(im)} \) is the image-potential produced in the beam pipe by a linear charge density \(\Lambda \) going through the beam center of charge \(\mathbf{r}_a \), \(N \) is the number of particles in the beam, \(R \) is the machine radius, \(r_0 \) is the classical particle radius, \(L \) is a scaling length (usually, the maximum pipe diameter), \(\nu \) is the nominal tune, and

\[
\begin{cases}
\delta_{x,y} = \partial_{x,y}|_{\mathbf{r}=\mathbf{r}_a}, \text{ incoherent regime,} \\
\delta_{x,y} = (\partial_{x,y} + \partial_{x,y}|_{\mathbf{r}=\mathbf{r}_a}), \text{ coherent regime.}
\end{cases}
\]

2 THE METHOD
For computing the image potential \(\Phi^{(im)} \) in rounded rectangular geometries, it is convenient to use the rectangular-domain Green’s function \(g_R \) (henceforth RDGF), viz.:

\[
\Phi^{(im)}(\mathbf{r}, \mathbf{r}_a) = \Phi(\mathbf{r}, \mathbf{r}_a) - \Lambda g_0(\mathbf{r}, \mathbf{r}_a),
\]

\[
\Phi(\mathbf{r}, \mathbf{r}_a) = \Lambda \left[\sum_{k} g_R(\mathbf{r}, \mathbf{r}_k) \rho_{\sigma_k}(l_k) dl_k + g_R(\mathbf{r}, \mathbf{r}_a) \right],
\]

where \(g_0 \) is the free-space Green’s function, the unknown \(\rho_{\sigma_k} \) are obviously nonzero only on the rounded portion of \(\partial S_0 \), i.e., the arcs \(\sigma_k \) and \(l_k \) is the arc-length on \(\sigma_k \).

We seek a hybrid (analytical-numerical) solution of eq. (4) by using Galerkin (moments) method [6], whereby we first expand the unknown \(\rho_{\sigma_k} \):

\[
\rho_{\sigma_k}(l_k) = \sum_{n=1}^{N} b_n^{(k)} w_n^{(k)}(l_k),
\]

into a suitable (finite) set of basis functions \(\{w_1^{(k)}(l_k), \ldots, w_N^{(k)}(l_k)\} \), defined on \(\sigma_k \), where \(\{b_1^{(k)}, \ldots, b_N^{(k)}\} \), are \(N \)-dimensional vectors of unknown coefficients, and then enforce the (Dirichlet) boundary conditions on the arcs \(\sigma_k \), whence:

\[
\int_{\sigma_k} \Phi(\mathbf{r}, \mathbf{r}_a) w_n^{(k)}(l_k) dl_k = 0,
\]

\(n = 1, 2, \ldots, N; \ k = 1, 2, \ldots, P \),

thus obtaining a block-matrix linear system:

\[
[\mathbf{L}] \mathbf{b} = \mathbf{c}.
\]

The matrix \([\mathbf{L}] \) is readily shown to be symmetrical, positive definite and hence non-singular. The components of \(\mathbf{b}, \mathbf{c} \) and \(\mathbf{L} \) are explicitly given by (5),

\[
\epsilon^{(k)}_i = -\int_{\sigma_k} w^{(k)}_i(l_k) g(l_k, \mathbf{r}_a) dl_k,
\]
\[i = 1, 2, \ldots, N; \quad k = 1, 2, \ldots, P, \]
and:
\[[L_{M}^{(p,q)}]_{ij} = \int_{\sigma_{p}} \int_{\sigma_{q}} g(l_{p}, l_{q}) w_{i}^{(p)}(l_{p}) w_{j}^{(q)}(l_{q}) \, dl_{p} \, dl_{q}, \]
where the upper indexes identify the block sub-matrix, and the lower ones the element in each sub-matrix.

Using eq.s (2)-(5), once (7) has been solved, the Laslett coefficients can be computed without resorting to numerical differentiation. This makes the proposed method definitely more accurate than both finite-differences and finite-elements.

3 IMPLEMENTATION AND COMPUTATIONAL BUDGET

Fast and accurate numerical solution of (7) follows from a skillful choice of the RDGF representation in (4) and the basis functions in (5).

A rapidly converging series expansion of the RDGF [5], which explicitly contains the (logarithmic) singular term is \(^3\):
\[g_{n}(\mathbf{r}, \mathbf{\ell}) = -\sum_{m=-\infty}^{\infty} \log \frac{T_{m}^{10}(\mathbf{r}, \mathbf{\ell}) T_{m}^{01}(\mathbf{r}, \mathbf{\ell})}{T_{m}^{10}(\mathbf{0}, \mathbf{0}) T_{m}^{00}(\mathbf{0}, \mathbf{0})}. \] (10)

where:
\[T_{m}^{pq}(\mathbf{r}, \mathbf{\ell}) = 1 + \exp \left[-2 \left| y - (-)^{p} y_{b} + 2 b m \frac{\pi}{a} \right| + 2 \exp \left[y - (-)^{p} y_{b} + 2 b m \frac{\pi}{a} \cos \frac{\pi}{a} (x - (-)^{q} x_{b}) \right] \right], \] (11)
a, b being the rectangle side lengths.

A convenient set of (partially overlapping) piece-wise parabolic subdomain basis functions, can be defined in terms of the local angles \(\phi \) (we drop the suffix \(k \) for simplicity) as follows:
\[w_{i}(\phi) = \frac{\Delta \phi^{2} - (\phi - \phi_{i})^{2}}{\Delta \phi^{2}}, \]
\[\phi_{i} - \Delta \phi (1 - \delta_{i1}) \leq \phi < \phi_{i} + \Delta \phi (1 - \delta_{iN}), \]
\[i = 1, 2, \ldots, N, \] (12)
where \(\Delta \phi \) is the angular discretization step (assumed the same for all arcs), \(\phi \) is related to the local arc-length \(l \) by \(l = R \phi, \) \(R \) being the local curvature radius, and \(\delta_{iN} \) is the Kronecker symbol\(^4\). The relevant local coordinate systems are sketched in Fig. 1. Note that: i) the choice of sub-domain basis functions, rather than full-domain ones, results into fewer singular integrals in \([L]^{ij}\); ii) no polygonal approximation of the arcs is implied, resulting into fewer functions being needed for a given accuracy.

Letting \(P \) the number of arcs in the rounded portion of \(\partial S_{0}, \) the system (7) has rank \(NP. \) Computing the matrix elements requires evaluating up to \(PN(\text{PN} - 1)/2 \) double-integrals\(^5\). These latter can be either evaluated numerically using standard routines appropriate for regular [7] and singular integrands [8], or analytically [4]. Matrix inversion for solving (7) is not the most demanding task, in view of the typically small (\(NP \approx 20 \)) \(L \) matrix size. In all numerical simulations below we truncated (10) at \(|m| \leq 3 \) and took \(\Delta \phi = \pi/10, \) corresponding to a matrix size \(NP = 20. \)

4 NUMERICAL RESULTS AND CONCLUSIONS

The circular pipe, for which the tune-shifts are known exactly, is the hardest conceivable test case for the proposed method (largest departure from rectangular geometry). It is seen from Fig. 2 that the obtained accuracy is very good.

Our method was subsequently applied [4] to a number of different proposed geometries relevant to LHC [3].

As an example the contour-level plots for the incoherent tune-charts of a stadium-shaped pipe, sketched in Fig. 3, are shown in Fig.s 4-6.

As a conclusion, we found that the above hybrid approach is comparatively faster and more accurate than available finite-element and/or finite-difference techniques.

5 REFERENCES

\(^{3}\)It is easily recognized that the (logarithmic) singularity of \(g_{R} \) appears in the \(T_{0}^{10} \) term.

\(^{4}\)For \(i = 1, N, \) eq. (12) yields the correct behaviour at the points where the circular arcs join the straight portions of \(\partial S_{0}, \) where \(\rho_{n} \) can be different from zero, but its derivative should vanish.

\(^{5}\)Due to geometrical (specular) symmetries, the effective number of elements to compute is usually smaller.
Fig. 1 - Local coordinate system relevant to eq. (12).

Fig. 2 - Circular pipe. Errors on Laslett coefficients vs. scaled radial distance, $p = \frac{1}{a} \left(\frac{x-a}{2} \right)^2 + \left(\frac{y-a}{2} \right)^2$.

Fig. 3 - Stadium-shaped pipe (a=1, b=0.7).

Fig. 4 - Stadium-shaped pipe. Incoherent Laslett coefficients (both normal modes).

Fig. 5 - Stadium-shaped pipe. Coherent Laslett coefficient (1st normal mode).

Fig. 6 - Stadium-shaped pipe. Coherent Laslett coefficient (2nd normal mode).