Parameters of the SLAC Next Linear Collider*


Abstract

In this paper, we present the parameters and layout of the Next Linear Collider (NLC). The NLC is the SLAC design of a future linear collider using X-band RF technology in the main linacs. The collider would have an initial center-of-mass energy of 0.5 TeV which would be upgraded to 1 TeV and then 1.5 TeV in two stages. The design luminosity is $> 5 \times 10^{33} \text{cm}^{-2}\text{sec}^{-1}$ at 0.5 TeV and $> 10^{34} \text{cm}^{-2}\text{sec}^{-1}$ at 1.0 and 1.5 TeV. We will briefly describe the components of the collider and the proposed energy upgrade scenario.

I. INTRODUCTION

A number of groups around the world are creating designs for a future linear collider. The present state of the designs can be found in Ref. [1] and a summary of the present status and the required R&D can be found in Ref. [2]. In this paper, we describe the SLAC Next Linear Collider (NLC). The NLC would have an initial center-of-mass energy of 0.5 TeV and would then be upgraded to 1 TeV and finally 1.5 TeV in the center-of-mass.

The primary parameters for the three stages of the design are listed in Table 1. The parameters of the 500 GeV collider are based upon technology that has been demonstrated or is expected to be demonstrated within the next few years. The upgrade path to 1 TeV involves a very straightforward extrapolation of the RF technology, which could be expected to be ready by the time the collider starts operating at 500 GeV. Specifically, it requires that each of the 50 MW klystrons be replaced with two 72 MW klystrons. It also requires increasing the linac and final focus lengths by roughly 20%. This additional length could be built into the 500 GeV collider allowing the 1 TeV energy upgrade to be made adiabatically by simply replacing and adding klystrons and modulators and replacing spool pieces at the end of the accelerator with accelerating structures.

At this time, there are many possible upgrade paths to 1.5 TeV. The 1.5 TeV design will require further upgrades of the RF system to limit the AC power consumption. Examples are a Two Beam Accelerator concept from LBL and LLNL, grid-switched and cluster klystrons, and binary pulse compressors. In Table 1, we have listed a set of parameters which assumes a binary pulse compression system. To ensure both the possibility of the 1.5 TeV upgrade and to provide operational flexibility, we are designing the primary components of the collider to allow for a substantial variation in parameters such as beam charge, accelerating gradient, etc. In the next sections, we will outline the components of the design and briefly summarize the R&D status.

*Work supported by the Department of Energy, contract DE-AC03-76SF00515

Table 1. Parameters of NLC designs.

<table>
<thead>
<tr>
<th>CM Energy [TeV]</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity [10^{33}]</td>
<td>7.1</td>
<td>14.5</td>
<td>16.1</td>
</tr>
<tr>
<td>Rep. Rate [Hz]</td>
<td>180</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Bunch Charge [10^{10}]</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Bunches/RF Pulse</td>
<td>90</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Bunch Sep. [ns]</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>$\gamma \epsilon_x / \gamma \epsilon_y$ IP [10^{-8} m-rad]</td>
<td>500/5</td>
<td>500/5</td>
<td>500/5</td>
</tr>
<tr>
<td>$\beta_x / \beta_z$ IP [mm]</td>
<td>10/0.1</td>
<td>25/0.1</td>
<td>37/0.15</td>
</tr>
<tr>
<td>$\sigma_x / \sigma_z$ IP [mm]</td>
<td>320/3.2</td>
<td>360/2.3</td>
<td>360/2.3</td>
</tr>
<tr>
<td>$\sigma_\gamma$ IP [\mu m]</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Upsilon</td>
<td>0.09</td>
<td>0.27</td>
<td>0.41</td>
</tr>
<tr>
<td>Pinch Enhancement</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Beamstrahlung $\delta_B$ [%]</td>
<td>2.3</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td># Photons per $e^-/e^+$</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Loaded Gradient [MV/m]</td>
<td>37</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Active Linac Length [km]</td>
<td>14.2</td>
<td>17.0</td>
<td>25.5</td>
</tr>
<tr>
<td>Total Site Length [km]</td>
<td>20.0</td>
<td>25.5</td>
<td>36.2</td>
</tr>
<tr>
<td># of Klystrons</td>
<td>3940</td>
<td>9456</td>
<td>7092</td>
</tr>
<tr>
<td>Klyst. Peak Pwr. [MW]</td>
<td>50</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Pulse Comp. Gain</td>
<td>3.6</td>
<td>3.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Power/Beam [MW]</td>
<td>4.2</td>
<td>7.9</td>
<td>11.9</td>
</tr>
<tr>
<td>AC Power [MW]</td>
<td>103</td>
<td>202</td>
<td>240</td>
</tr>
</tbody>
</table>

II. $e^+/e^-$ SOURCES

The design of the NLC polarized electron source is based upon the Stanford Linear Collider (SLC) polarized source [3]. The SLC source very reliably delivers highly polarized (>80%) beams to a damping ring at 1.2 GeV with approximately $5 \times 10^{10}$ in a single bunch, a beam emittance of roughly $\gamma \epsilon_{x,y} = 1 \times 10^{-4}$ m-rad, and an energy spread of ±1%. In the NLC design, the polarized electrons originate at a strained GaAs cathode DC biased at -120 kV. To create the bunch train, the drive laser is sinusoidally modulated so that it delivers a pulse train of ninety 700 ps pulses (FWHM) with a repetition rate of 714 MHz. The electrons are prebunched in two 714 MHz subharmonic bunchers and then bunched and accelerated in an S-band traveling wave buncher, an S-band capture section, and a 2 GeV S-band linac.

Because the NLC design requires relatively low single bunch charge, the important design issues relate to the long bunch trains. Compensation techniques have been devised to control the transient beam loading and the long-range transverse wakefields, which are important in the S-band sections, are reduced by using scaled versions of the Damped-Detuned Structures discussed in
III. DAMPING RINGS AND COMPRESSORS

The damping rings for the NLC [5][6] must produce beams with normalized emittances of \( \gamma \epsilon_x = 3 \times 10^{-6} \text{ m-rad} \) and \( \gamma \epsilon_y = 3 \times 10^{-8} \text{ m-rad} \). A single damping ring is used to damp the electron beams. It is 220 meters in circumference and damps four trains of 90 bunches simultaneously; the trains are separated by 60 ns, allowing fast kickers to inject and extract individual bunch trains without disturbing the others.

Because the incoming positrons have a much larger emittance, an additional pre-damping ring is used to damp the \( e^+ \) beam. The pre-damping ring is half the circumference of the main damping ring and stores two bunch trains at once. It is a relatively simple ring with a large aperture and a large equilibrium emittance. After the pre-damping ring, the positrons are injected into a main damping ring that is identical to the electron damping ring.

The damping ring designs are similar in many ways to the 3rd generation light sources and can benefit from much of the technology that has been developed. Furthermore, the ATF Damping Ring [7], being constructed at KEK, will experimentally verify many of the design concepts.

After the damping rings, the bunch length must be compressed by a factor of 40. This is done in two stages [8]. The first stage, located after the rings at 2 GeV, compresses the rms bunch length from 4 mm to 500 \( \mu \text{m} \). The first stage also contains a spin rotator system, consisting of four solenoids, that provides full control over the orientation of the beam polarization.

Following the first bunch compression, the beam is accelerated to 10 GeV in an S-band linac and then further compressed to a final bunch length of 100 \( \mu \text{m} \). This second stage compressor is a telescope in longitudinal phase space, preventing energy errors from the pre-linac from becoming phase errors in the X-band linac.

IV. X–BAND RF

The NLC X-band RF system is based on the SLAC S-band linac RF, but the frequency has been increased to 11.4 GHz to support the higher gradient. The technology to provide the high gradient at high frequency has been under development at SLAC and KEK for the past 8 years. It will be used to provide acceleration at the NLC Test Accelerator (NLCTA) [9] which is presently under construction.

The 500 GeV NLC requires 50 MW 1.25 \( \mu \text{s} \) klystrons [10] as shown in Table 1. For economy and efficiency these are planned to be focussed with a periodic permanent magnet (PPM) lattice. Presently there are two klystrons operating at levels exceeding 50 MW with 1.5 \( \mu \text{s} \) pulses. A third klystron has operated at about 60 MW for short pulses and is presently being conditioned for long pulse operation. These three klystrons will be used in the NLCTA to gain operational experience and the NLC PPM klystron is presently undergoing detailed design.

An RF pulse compression system is needed to compress the klystron RF pulse by a factor of 5 while increasing the power by a factor of 3.6. A prototype SLED-II system is presently operating at SLAC. It has achieved pulse compression gain of 4 to 4.4 and has exceeded 200 MW output power. It is presently being used for accelerator structure tests. The three SLED-II systems for the NLCTA are being fabricated.

The accelerator structures for the NLC must control the long-range transverse wakefield to prevent beam-breakup while accelerating beams with an unloaded gradient of 50 to 100 MV/m. The wakefield is controlled with a Damped-Detuned Structure (DDS) [11] where the transverse modes are both detuned and weakly damped, reducing the Q’s to roughly 1000. A test of a detuned structure (no damping) in the ASSET facility [12] verified the rapid fall off of the wakefield roughly 1.4 ns behind the driving bunch; the damping in the DDS structure will further decrease the wake over the long bunch train. This detuned structure has also been tested up to 55 MV/m and will be conditioned up to about 100 MV/m.

Figure 1. Schematic layout of the SLAC NLC design.
65 MV/m with the prototype SLED-II system. Three additional
detuned structures for the NLCTA are being brazed. The DDS
structure is presently undergoing detailed mechanical design.

V. X–BAND LINAC

The X-band linacs [13] accelerate the beams from 10 GeV
to the final beam energy. Each of the linacs includes roughly
700 quadrupoles placed between the accelerator structures in a
FODO lattice. To preserve the low emittance beams, very tight
tolerances are required on the alignment and RF control. Beam-
based techniques are needed to achieve the alignment tolerances.
To this end, dipole mode detectors are used in the structures and
BPM’s are placed in the quadrupoles. In addition, both the struc-
tures and the quadrupoles are supported on separate mechanical
movers.

Many of the required beam-based alignment techniques are
being verified in the SLC. Further tests will be made using AS-
SET and the NLCTA. While the alignment concepts are straight-
forward, experimental verification is necessary to understand the
practical limitations and long term stability.

VI. COLLIMATION AND FINAL FOCUS

After the linac and subsequent diagnostics, the beam enters
a collimation system [14] which collimates both phases in the
horizontal and vertical planes as well as the energy deviation.
Although the collimation section is relatively long (1.8 km for
the 1 TeV design), it is felt necessary to prevent backgrounds that
could overwhelm the detectors.

Following the collimation section, an IP-switch and short arc
provide a 10 mrad deflection and direct the beam to one of the
two IP’s. The design includes two IP’s to allow the alternate
detector designs and final focus systems that would be required to
optimize for $\gamma-\gamma$ and $\gamma-e^-$ collisions as well as $e^+e^-$ collisions.

Finally, the beam enters the final focus [15]. At the beginning of
the final focus, there are coupling control and beta-matching
sections along with phase space diagnostics. The remainder of
the final focus optics is similar to the Final Focus Test Beam
(FFTB) [16] with the addition of two sextupoles [17] to increase
the bandwidth and a crab cavity which is needed due to 10 mrad
crossing angle. The system parameters were optimized as de-
dcribed in Ref. [18] and the tolerances are described in Ref. [15].
Based on the SLC and FFTB experience, extensive considera-
tion is being given to the tuning techniques and diagnostics re-
quirements, as well as stability issues. Finally, the beam line from
the IP to the dump [19] also contains extensive diagnostics to
measure the beam centroid, polarization, and disruption, as well
as secondary pairs and beamstrahlung.

Much of the design is based on the operating experience
with the SLC. In addition, many of the novel components of
the collider are being or will be tested in specially designed test
facilities. In particular, ASSET and the NLCTA will verify the
RF system and accelerating structures, the FFTB is studying the
final focus designs, and the KEK ATF will study issues for the
damping rings.

VII. DISCUSSION

In this paper, we have given the primary parameters and
described the layout of the SLAC NLC. We have also described
the upgrade path to 1 TeV, which is being explicitly designed into
the collider, and possible upgrade paths to 1.5 TeV. Finally, we
are designing the collider to operate over a large range of beam
parameters to both ensure the feasibility of the upgrades as well
as provide operating flexibility. More detailed descriptions of
the subsystems and tolerances can be found in the references.

References

[1] Proc. of the 1995 Workshop on Next Generation Linear
Colliders Tsukuba, Japan, April, 1995.
[2] International Inter-Laboratory Collaboration for Linear
Colliders – Technical Review Committee Report, in prepa-
ration.
ings.
SLAC NLC,” these proceedings.
Damping Rings,” these proceedings.
Linear Collider,” these proceedings.
Accelerating Structure,” these proceedings.
2475.
NLC Main Linacs,” these proceedings.
SLAC Next Linear Collider,” these proceedings.
[16] K. Oide, “Results of the Final Focus Test Beam,” these proceed-
ings.
Focus System,” these proceedings.
[19] J. Spencer, et. al., “The SLAC NLC Extraction and Diag-
nostic Line,” these proceedings.