20 MV/m Accelerating Gradient with Heat Treatment of a Six Cell, 1.5 GHz Cavity for TESLA,*

Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853 USA

SUMMARY
In order to use superconducting RF accelerating structures in the construction of a high energy linear collider, the structures must be designed to meet specific goals. These include low peak surface electric fields, good higher order mode power extraction from the ends, maximum accelerating gradient and, above all, low cost per unit accelerating voltage. Such a structure has been designed, manufactured and tested. Preliminary results have been reported.11 The cavity was then mechanically braced with Niobium braces and then heat treated. The final test gave 20 MV/m accelerating field. Details of some difficulties encountered will also be presented at this time.

INTRODUCTION
At this time in the development of superconducting RF accelerating cavities, the accelerating gradient is limited by two phenomena, electron field emission and thermal breakdown. The first of these makes it imperative to choose a cell shape that minimizes E_{pk}/E_{acc} and the second phenomena to minimize H_{pk}/E_{acc} (the ratio of the peak surface fields to the accelerating gradient). As field emission is the dominant gradient limitation, there is considerable premium in lowering E_{pk}/E_{acc}. The cell to cell coupling (K) is also affected by the shape. This is true of the coupling of the HOM's as well as the fundamental TM010 mode. Because of this, the number of coupled cells comprising an accelerating unit is limited. A larger number of cells/module helps reduce the structure cost by reducing the number of couplers as well as by improving the filling factor for the machine. Another consequence of the cell to cell coupling in the TM010 mode is the relative ease of tuning the structure to achieve uniform accelerating gradient along the length of the unit.

DESIGN OF THE STRUCTURE
In order to test our ability to produce an accelerating structure which best meets the requirements of a linear collider, a series of calculations were made in which we tried to design the shape of the structure which had the following properties:

- Low E_{pk}/E_{acc}.
- Tolerable cell to cell coupling (K) in the TM010 mode.
- More than 5 cells/unit.
- Low cost.
- Tolerable Q_{ext} in all HOM's with couplers on the beam pipe.

Although it is straightforward to reduce E_{pk}/E_{acc} by reducing the beam pipe radius BT, this is undesirable because the transverse wakefields increase as BT^{-3} which makes it more difficult to control multibunch instabilities and meet alignment and vibration tolerances for the linac.

The cavity shape that was manufactured and tested is shown in Figure 1.

![Figure 1](image)

The five independent variables describing the shape were as follows:
- OR, the outside radius.
- BT, the beam tube radius.
- L/2, the half length of the cell.
- NR, the nose radius, and
- Slope, the slope of the straight wall segment.

The OR which primarily determines the fundamental mode frequency is adjusted in all cases to obtain the desired frequency. The $L/2$ value is determined by the frequency as the particles to be accelerated must be kept in phase with the RF oscillations. Namely $L/2$ must be equal to $1/4$ wavelength.

In order to minimize the number of couplers required on the cavity module, the cells were polarized in a manner such that both polarizations of the dipole modes could be damped with one coupler.2

CONSTRUCTION
The cavity chosen to best meet the stated requirements was manufactured of 1.5 mm Niobium sheet and was 6 cells long. The number of 6 cells was limited by the available furnace and by the available testing facilities. The cell parameters are shown in Table 1.

* Supported by the National Science Foundation, with supplementary support under the U. S.-Japan Agreement.
† Babcock & Wilcox, Lynchburg, VA
‡† Now at Stanford University, Palo Alto, CA
Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1500 MHz</td>
</tr>
<tr>
<td>OR (Equator Radius)</td>
<td>9.48 (9.43 ends) cm</td>
</tr>
<tr>
<td>NR (Nose Radius)</td>
<td>1.09 cm</td>
</tr>
<tr>
<td>BT (Beam Tube Radius)</td>
<td>3.56 cm</td>
</tr>
<tr>
<td>Slope</td>
<td>70 degrees</td>
</tr>
<tr>
<td>L/2 (1/2 cell length)</td>
<td>4.93 cm</td>
</tr>
<tr>
<td>Coupling K</td>
<td>1.8%</td>
</tr>
<tr>
<td>E\text{pk}/E\text{acc}</td>
<td>2.1</td>
</tr>
<tr>
<td>R/Q</td>
<td>89 ohms /cell</td>
</tr>
<tr>
<td>H\text{pk}/E\text{acc}</td>
<td>57 gauss/MV/meter</td>
</tr>
<tr>
<td>Length of Polarizing Segment</td>
<td>1.27 cm</td>
</tr>
<tr>
<td>% Freq. Split of TM_{110} mode</td>
<td>2.9% (2.03 GHz)</td>
</tr>
<tr>
<td>% Freq. Split of TE_{111} mode</td>
<td>0.22% (2.02 GHz)</td>
</tr>
</tbody>
</table>

TESTS OF CAVITY

This six cell niobium cavity (LTP6-1) was initially tested twice. In both tests the structure reached fields of $E_{\text{acc}}=18$ MV/meter with considerable field emission, but final thermal breakdown. These tests were reported in Reference 1 and the curves from these tests are shown in Figure 2.

In order to reduce field emission we wished to vacuum fire the structure. Because the cell walls were only $\frac{1}{16}$" thick, three longitudinal braces were welded to the equator of each of the cells to prevent distortion during firing and collapse during later tests.

In the process of welding on these braces, a gun arc in the EBW (electron beam welder) melted a $\frac{1}{2}$" diameter hole in one of the cells. A very careful repair was made and when the cavity was remeasured at room temperature it was found to still retain adequate tune of all cells to give a level field profile.

The cavity was retested at this stage and the results were not very good. There was thermal breakdown at an E_{acc} level of 8-10 MV/meter. This data is shown in Figure 3.

After a heavy etch to hopefully remove the apparent new defect, the cavity was fired for four hours at 1500 deg. C in a standard titanium lined niobium box. After firing, the structure was rinsed, but the titanium was not chemically removed from the outside of the structure. In this test, the E_{acc} value achieved was 15.3 MV/meter. The results of this test is shown in Figure 4.

After this test the field flatness was measured to see if the firing had detuned the cavity. The $E_{\text{max}}/E_{\text{min}}$ cell ratio was measured to be 1.9. This value of cell to cell field variation is excessive. During the firing the braced cavity was suspended from the top beam tube. This caused the top end half cell to be deformed by the force applied to it while the niobium was in the hot, softened condition. It was found that by tuning only...
the top half cell, that had taken all the cavity weight, the cell fields could be completely leveled.

After this first heat treating, the field level in the cavity was still not quite as high as the field achieved in the first tests. In an attempt to push to higher fields, the cavity was again chemically etched and fired for 4 more hours at 1500 C. After firing, the cavity was tuned in the clean room. This was followed by a Methanol rinse followed by ultrasonic cleaning with Methanol, then a final Methanol rinse.

After mounting, the cavity was again tested and the results are shown in Figure 5.

As can be seen, the field level of $E_{\text{acc}} = 19.5$ MV/m at a very good Q value was finally realized.

CONCLUSIONS
Several important lessons were learned in the course of the experiments on this cavity structure. They could be listed as follows:

- The ratio of H_{pk}/E_{acc} must be watched when the cell shape is designed. Since the time when this cavity shape was developed a new shape has been developed for TESLA which does not suffer from this high value of H_{pk}/E_{acc}.
- Sometimes a very good result is achieved on the first test.
- Bracing of the cells is very effective in stabilizing the parts that are braced.
- Furnace treatment with Titanium is effective in increasing RRR and, therefore, raising the thermal breakdown limits.
- Very extensive repairs may be made on the cells with no long term bad effects.
- Chemical cleaning of the structure seems to completely restart history in terms of the surface field emission behavior.
- Polarized cells seem to exhibit no different behavior in the TM010 mode by virtue of being polarized.
- Careful records were kept of the costs of the manufacture and treatment of this structure. The total was less than 6000.
- Bead pull measurements can be made on a cavity in a clean room, under clean conditions without introducing excessive field emitters that are difficult to remove.

The experiments with this structure were important steps in the process of achieving high field, low cost superconducting linear collider cavities.

REFERENCES