Bunched Beam Stochastic Cooling in the Fermilab Tevatron Collider

Fermi National Accelerator Laboratory*
P.O. Box 500 MS 341
Batavia, IL 60510

Abstract

In order to double the integrated luminosity of the Tevatron collider in the next running period, a 4-8 GHz bunched beam betatron stochastic cooling system has been designed. The horizontal and vertical emittances of the protons and antiprotons will be cooled to counteract the effects of power supply noise, beam-beam interaction, and intrabeam scattering. A vertical proton prototype system has been installed in the Tevatron and tested. In addition, measurement results and details of the hardware are reviewed.

II. COHERENT POWER MEASUREMENTS

One of the mysteries associated with bunched beam cooling in the Tevatron Collider was the existence of larger than expected coherent revolution harmonic power. Given that the longitudinal distribution of the beam is roughly Gaussian [4], one would expect that the revolution harmonic power should drop quadratically when viewed on a logarithmic scale. Figure 2 contains the measured revolution harmonic power as a function of frequency (where the beam power at each harmonic of the RF frequency was measured). Note that instead of a downward parabolic shape, the spectrum actually exhibits something like a 1/f shape.

If one were to Fourier transform this distribution back into the time domain, the required beam profile would scale as the K_1 Bessel function, which is undefined at the bunch center! Therefore, this excessive power at high frequency must be due to a small, high frequency modulation of the beam profile. This high frequency structure could possibly be due to filamentation from a small coherent oscillation [5].

A study was undertaken to find such a coherent oscillation. Figure 3 contains a closeup view of a revolution harmonic line. By fitting the amplitudes of the various synchrotron sidebands on either side of the revolution frequency to a Bessel
function distribution describing FM modulation, a coherent dipole oscillation of amplitude 60 psec is calculated. Therefore, a plausible explanation for these lines now exists.

With the original pickup array it was noted [2] that microwave signals trailed the bunch signal on an oscilloscope image of the pickup signal. This microwave burst was found to be caused by the response of the tunnel preamplifier to shock excitation by a large voltage burst of beam signal. With the above improvements reducing the coherent power (and hence voltage), this phenomenon is no longer visible (see figures 4 and 5). What remains is a small microwave signal on only the hybrid difference port which is independent of coherent beam power.

III. REPEITITIVE NOTCH LOOP FILTER

A typical single turn delay notch filter produces a \(|\sin(x)|\) response which repeats each revolution period. The unfortunate aspect of this filter is that the phase linearly progresses through \(180^\circ\) every revolution period. In the case of small mixing factor where the betatron Schottky signals are spread over a large portion of each revolution band, a large portion of the particles see either no damping or antidamping.

The purpose of the loop notch filter is to overcome this phase change per band. The phase change comes from the fact that betatron oscillation information is being applied to the kicker one turn too late, thereby giving the particles the wrong kick. If one injects a bunch signal into a storage loop each turn, where the fraction of the signal which survives one turn of the loop is described by the variable \(\alpha\), the betatron information is exponentially averaged away and the transfer function of the full filter becomes

\[
T(\omega) = \frac{1 - e^{-i\omega \tau}}{1 - \alpha e^{-i\omega \tau}},
\]

where \(\tau\) is the revolution period (see figures 6 and 7).
IV. PHASING & TIMING MEASUREMENTS

When the second prototype pickup tank was installed, the relative position of the pickup and kicker tanks in the lattice was reversed (pickup now upstream). This was done because the fractional tune of the accelerator was changed from 0.4 to 0.6, and the change was necessary to keep the phase advance between the pickup and kicker at an odd multiple of 90°. The implications of this change on open loop transfer function measurements was both dramatic and unexpected (see figure 8).

Compared with the previous measurements [2], which exhibited a destructive interference in the amplitude at a fractional tune of 0.5, the amplitude at that point now adds the signals from both betatron lines. In the phase, while previous measurements showed a phase advance of 2x360° per revolution harmonic band, 3x360° is now observed.

V. REFERENCES