EMITTANCE MEASUREMENTS AT THE BATES LINAC

MIT Bates Linear Accelerator Center
P.O. Box 846, Middleton, MA 01949

Abstract

An emittance measuring system has been installed at the Bates Linear Accelerator Center. The system consists of three wire scanners used to measure the electron beam profile, plus a microcomputer for data acquisition and processing. The scanners are located in a drift space on a beam line. Each scanner measures the horizontal and vertical beam size with a possible resolution of 25 μm. The horizontal and vertical beam phase spaces can then be determined. Results of measurements are presented here. Calculations relating the theoretical accuracy of the emittance measurements with the distance separating the scanners, and the location and size of the beam waist, are also presented.

Another technique for measuring emittance has also been employed. This technique involves using a wire scanner to measure the beam size at a fixed location, as a function of the strength of an upstream quadrupole.

Introduction

The transverse phase space of a particle beam can be characterized by three parameters. For example, knowing the extent of the beam phase ellipse in distance and in angle, plus the orientation of the ellipse, will fully determine the phase space. An equivalent set of parameters is the location of a beam waist, the waist radius, and the maximum particle divergence at the waist. Various techniques can be used to measure these parameters. Measuring the beam size at three different locations, with fixed machine optics, will determine the phase space, as will measuring the beam size at one location for three different optics configurations.

In this paper, we describe the technique for measuring the beam phase space by using the measurements of the beam sizes at three different locations. Calculations regarding the precision of this technique are presented, as are results of experimental measurements of the beam phase space at the Bates Linac.

Measurement Technique

Consider a beam in a field free region (drift space). If x_0 is the horizontal beam size at a waist located at axial position z_0, and θ_0 is the maximum horizontal divergence angle any particle makes with the beam axis at the waist, then the beam size x at location z is given by

$$x^2 = x_0^2 + (z - z_0)^2 \theta_0^2$$

To measure the beam phase space, we measure the beam size using three profile monitors, equally spaced by the distance L. Defining the origin to be at the center profile monitor, so that $z_1 = -L$, $z_2 = 0$, and $z_3 = +L$, the beam sizes x_i at the monitors are given by

$$x_1^2 = x_0^2 + (L + z_0)^2 \theta_0^2$$
$$x_2^2 = x_0^2 + z_0^2 \theta_0^2$$
$$x_3^2 = x_0^2 + (L - z_0)^2 \theta_0^2$$

Thus, knowing the beam sizes x_i and the profile monitor separation L, we can calculate the waist size

$$x_0 = \left\{\frac{x_1^2 - \frac{1}{8} \left(\frac{x_1^2 - x_2^2}{x_1^2 - 2x_2^2 + x_3^2} \right) \right\}^{1/2}$$

the divergence at the waist

$$\theta_0 = \frac{1}{\sqrt{2L}} (x_1^2 - 2x_2^2 + x_3^2)^{1/2},$$

and the location of the waist

$$z_0 = \frac{L}{2} \left(\frac{x_1^2 - x_3^2}{x_1^2 - 2x_2^2 + x_3^2} \right).$$

The particle beam emittance ϵ is given by the product $x_0 \theta_0$,

$$\epsilon = \frac{1}{4L} \left[8x_0^2 (x_1^2 - 2x_2^2 + x_3^2) - (x_1^2 - x_2^2)^2 \right]^{1/2}.$$

A similar set of calculations holds in the vertical dimension.

These calculations are for the case of equally spaced profile monitors in a drift space. They can be extended to include unequal monitor spacing and the presence of intervening optical components.

Measurement Error Analysis

In order to make meaningful emittance measurements using beam profile monitors of realistic resolution, it may be necessary to set up the beam and the profile monitors in a particular manner. The precision of the measurements depends on L, x_0, and z_0. (For a beam of fixed emittance, $\theta_0 \propto x_0^{-1}$, and is not an independent variable.) In general, the precision of an emittance measurement increases with increasing L, and when the waist is located closer to the center profile monitor.

To quantitatively determine the uncertainty in the phase space measurements, standard propagation of error calculations have been made. In making these calculations, it has been assumed that the uncertainty in the measured beam sizes σ_{x_i} dominate, and that L is known to greater precision. The results are

$$\frac{\sigma_{x_0}}{x_0} = \left\{ \sigma_{x_1}^2 + \frac{1}{4} 4z_0^2 [4(x_1^2 - 2x_2^2 + x_3^2) - (x_1^2 - x_2^2)^2] + \sigma_{x_2}^2 (x_1^2 - x_3^2)^2 (x_1^2 - 4x_2^2 + x_3^2)^2 \right\}^{1/2}$$

$$\frac{\sigma_{\theta_0}}{\theta_0} = \sqrt{2} \left(\frac{\sigma_{x_1}^2 + \sigma_{x_2}^2 + \sigma_{x_3}^2}{x_1^2 - 2x_2^2 + x_3^2} \right)^{1/2},$$

$$\sigma_{z_0} = \frac{2L}{(x_1^2 - 2x_2^2 + x_3^2)^2} \left[\frac{\sigma_{x_1}^2 (x_2^2 - x_3^2)^2 + \sigma_{x_2}^2 (x_1^2 - x_3^2)^2}{x_2^2 - x_3^2} \right]^{1/2},$$

$$+ \sigma_{x_2}^2 (x_1^2 - x_3^2)^2 + \sigma_{x_3}^2 (x_1^2 - x_2^2)^2 \right\}^{1/2}.$$
Using Eq. (10), the beam configuration for making optimum emittance measurements can be found. For example, the effect of moving the location of the beam waist is shown in Fig. 1, for fixed monitor separation and different waist sizes.

\[\sigma_e = \frac{4}{\sqrt{2}} \left[8x_0^2 (x_0^2 - 2(x_0^2 + x_0^2) - (x_0^2 - x_0^2)^2) \times \left[\sigma_x^2 x_0^2 (x_0^2 - 4x_0^2 - x_0^2)^2 + 16\sigma_y^2 x_0^2 (x_0^2 - 4x_0^2 + x_0^2)^2 \right] + \sigma_x^2 \sigma_y^2 (x_0^2 + 4x_0^2 - x_0^2)^2 \right]^{1/2}. \]

(10)

Fig. 1: Precision of emittance measurement \(\sigma_e \) vs. location of waist \(z_0 \), for different waist sizes \(x_0 \), here \(L = 10 \) m and \(\epsilon = 0.01 \text{ mm} \cdot \text{mrad} \). The precision of the beam width at each profile monitor is taken to be \(\sigma_{x_0} = 25 \mu \text{m} \).

As can be seen, it is always best to have the waist near the center monitor (\(z = 0 \)), although for some \(x_0 \) this requirement is not as critical. (When \(z_0 \approx 0 \), the precision of \(x_0 \) is improved, which leads to a decrease in \(\sigma_e \).) Figure 1 also indicates that for fixed \(z_0 \), there is a dependency of \(\sigma_e \) on \(x_0 \). This is shown explicitly in Fig. 2, which plots \(\sigma_e \) as a function of \(x_0 \) for \(z_0 = 0 \), and several different \(L \). The optimum value of \(x_0 \) as a function of \(L \) is shown in Fig. 3. Finally, with \(x_0 \) at its optimum value and \(x_0 = 0 \), the obtainable \(\sigma_e \) is shown as a function of \(L \) in Fig. 4. Here we see that the obtainable fractional precision \(\sigma_e / \epsilon \) scales as \(L^{-1/2} \).

Experimental Results

Emittance measurements at Bates, based on the above analysis, are made with an automatic emittance measuring system. The beam profiles are determined using high resolution wire scanners. Data from the scanners are digitized, acquired, and processed by the Linac Control System. The processing is done on a MicroVAX by programs written in a high level language, and includes fitting a Gaussian to the profile data to determine the beam size. Once the size is known at each scanner, the emittance, beam waist size and location, and beam divergence are calculated, along with estimates of their uncertainties.
Fig. 4: Precision of emittance measurement σ_{ϵ} at optimum x_0 and z_0 vs. monitor separation L, for $\epsilon = 0.01$ mm-mrad. The precision of the beam width at each profile monitor is taken to be $\sigma_{\epsilon} = 25\mu$m.

All data acquired and calculated are displayed on the MicroVAX workstation. These include plots of the raw data from the wire scanners, along with the fitted profiles. Finally, the beam phase space ellipse at the center scanner is calculated and displayed. Figure 5 shows a sample display. The time needed to acquire a complete set of data depends primarily on the speed of the wire scanners, with the data analysis taking much less time. The scanner speed is a function of several parameters such as the beam repetition rate and the range of scanner motion. Under typical conditions, an emittance measurement is completed in less than one minute.

Fig. 5: Sample emittance measuring system display. The horizontal and vertical data are shown on the left and right halves, respectively. The small boxes at the top show beam profile data. The larger boxes show the calculated beam phase space ellipses.

Fig. 6: Square of the horizontal beam size $\sigma_{\epsilon_{11}}$ vs. strength k of a quadrupole singlet 8.03 m upstream from the measurement point. The points are experimental data, and the curve is the best fit parabola.

Preliminary results have been obtained with this system. The three wire scanners are located in a drift space where the beam emerges from the linac. The measured value of the horizontal emittance is 0.04 mm-mrad at a beam energy of 175 MeV, and 0.02 mm-mrad at 250 MeV. This is in good agreement with the expected value of 10/\gamma mm-mrad. In addition, varying the strength of a quadrupole upstream from the emittance measuring system produces the expected rotation of the measured phase space ellipse. Similar results have been obtained in the vertical dimension. The uncertainties in these measurements, both statistical and systematic, are presently under study.

The emittance of the beam has also been measured using a different method. In this technique, the size of the beam is measured at one location, as a function of the strength of an upstream quadrupole. The square of the beam size should have a parabolic dependence on quadrupole strength. Results of such a measurement in the horizontal dimension are shown in Fig. 6. From the parameters of the parabola fit to the data, shown in Fig. 6, the emittance is determined to be 0.02 mm-mrad at 250 MeV, in agreement with the emittance measured using the three scanner technique.

Summary

Emittance measurements have been made at Bates using an automatic emittance measuring system, consisting of three beam profile monitors equally spaced in a drift region. The results obtained are in good agreement with the values expected at Bates. Measurement of the emittance by an independent technique has yielded similar results.

References