BEAM MISMATCH AND EMITTANCE OSCILLATIONS IN MAGNETIC TRANSPORT LINES

Robert J. Noble
Fermi National Accelerator Laboratory
Batavia, Illinois 60510

Abstract

We examine the behavior of axially symmetric space-charge dominated beams in magnetic transport lines using numerical simulation. A transport line containing two linear focusing solenoids used to match a continuous, unneutralized beam from an ion source to a radio frequency quadrupole (RFQ) is considered. We compare the beam evolution for beams with different initial emittances and density profiles. The initial emittance growth caused by nonlinear space-charge forces for a drifting beam expanding from a waist can be described by a universal curve. Subsequent emittance oscillations in the transport line result in beam mismatch at the RFQ entrance, but the effects diminish with increasing initial emittance.

Introduction

Recent progress in the understanding of emittance growth in space-charge dominated beams has provided new insight about beam evolution during transport. For these beams the space-charge term is much greater than the emittance term in the rms envelope equation (for a continuous, unaccelerated beam)

$$\frac{d^2 R}{ds^2} + k^2 R - \frac{e^2}{R^3} - \frac{K}{2R} = 0 \quad (1)$$

where $R = (r^2)^{1/2}$ is the rms beam radius, k is the focusing channel wavenumber, $e = (r^2) / (r^2 - (r')^2)^{1/2}$ is the rms emittance, $s = ds/dz$, and K is the generalized beam perveance. If we define the characteristic space-charge wavenumber as $k_0 = K^{1/2} / \sqrt{2}R$, then the condition for a space-charge dominated beam is $e/k_0 R^3 < 1$.

The physical picture of rms emittance growth being due to the amplitude dependence of particle oscillation frequencies and the attendant filamentation of the phase space ellipse was quantified by Lepoutre. He recognized that changes in space-charge field energy could be related to changes in rms emittance. More recently Anderson used the fact that the laminar motion of a space-charge dominated beam can be approximated by laminar flow in a cold beam ($e/k_0 R^3 \to 0$) in order to calculate emittance growth. He showed that the explosive emittance growth observed in simulations occurs to occur in a quarter of a plasma period for a matched beam in a continuous focusing channel ($k = k_0$) is given by $\Delta e^2 = (E/2R)^2 R^3$. Here $E = -\int f' dx / (N' R) = (1 - \sinh (\sqrt{e}/R))$ is the normalized space-charge field energy of the initial beam, F is the initial space-charge field, and the radius is large enough to include all of the beam. For a general beam profile $U > 0$, and for a uniform profile $U = 0$.

After the first quarter of a plasma period, Anderson demonstrated that the laminar motion in a cold beam terminates abruptly with shock formation (particle velocity ceases to be a single-valued function of position). This is manifested by a local charge density spike and marks the onset of irreversible phase space dilation as space-charge potential energy is converted into thermal particle motion. In a continuous focusing channel, damped emittance oscillations follow the initial explosive emittance growth as the beam density profile oscillates between peaked and hollow distributions.

Emittance Growth in Drifting Beams

Practical transport lines for nonrelativistic ions consist of combinations of drift spaces and lenses for matching the phase space ellipse of a source beam to the acceptance of a radio frequency quadrupole (RFQ) line. An RFQ generally requires a narrow, converging axially symmetric beam at its entrance. The parameters $\alpha = (R'/R) / e$ and $\beta = (R'/R) / e$ are commonly used to specify the beam envelope slope and width, respectively. Envelope integration programs such as TRACE used in the design of a beam transport line that will produce a specific α and β at an RFQ entrance. These programs assume that the beam density profile is uniform, and the rms emittance is constant.

Figure 1: Universal emittance growth curve for drifting beams expanding from or near a waist.

To investigate the effect of emittance oscillations on beam matching, a special particle-in-cell (PIC) code was written in FORTRAN. The code is previously described in a study comparing the beam transport properties of magnetic solenoids and Gabor plasma lenses. In that study we noted that for an unneutralized beam explosive emittance growth due to nonlinear space-charge forces occurs in the initial drift space following the ion source. Further simulations have been done using a wide variety of initial phase space distributions of the form $f(\theta, \phi) = f_0(\phi) f_1(\theta)$ for beams expanding from or near a waist. For a certain range of initial emittance e_0 and initial envelope slope $\alpha_{\theta_{0}}$, the universal emittance growth curve is Fig. 1 was found empirically for all drifting beams when $k_0 R^3 \leq 2$. Here $k_0 R^3 = K^{1/2} / \sqrt{2}R$, is the initial space-charge wavenumber, and R_0 is the initial rms beam radius. For a beam diverging (converging) significantly at $k_0 R^3 \geq 0$, the emittance curve will lie below (above) that in Fig. 1.

For $k_0 R^3 > 2$ the emittance evolution for a drifting beam is somewhat dependent on the initial charge distribution, but certain general features are evident. If $e_0 / \sqrt{2} R_0 R^3 k_0 R^3 < 1$, the emittance generally decreases after $k_0 R^3 = 2$, reaches a minimum when $e_0 / \sqrt{2} R_0 R^3 < 0$ and then increases again, although more slowly than the initial explosive growth rate. This emittance "bounce" becomes shallower with increasing initial emittance and disappears for $e_0 / \sqrt{2} R_0 R^3 k_0 R^3 > 1$.

Mismatch in Magnetic Transport Lines

Two degrees of freedom are needed in a transport line to match a round beam's α and β to the RFQ acceptance. In a typical transport line the lens and drift lengths are not always adjustable after installation, and a minimum of two lenses is required. We will compare the beam evolution through the magnetic transport line shown in Fig. 2 for a typical range of initial emittances and different initial beam density profiles.

The lens positions and lengths shown in Fig. 2 were arbitrarily chosen symmetrically between the ion source exit and the RFQ entrance. Dimensionless parameters are used to describe the transport line in order to illustrate fundamental scalings independent of beam size and perveance. The illustrated beam envelope was obtained by integrating Eqn. (1) starting from a waist with a constant emittance $e_0 / k_0 R^3 = 0.1$. For space-charge dominated beams with different emittances, the beam envelopes, R / R_0, are similar.
except at the RFQ entrance where waist formation can be affected by both emittance and space-charge. For the three initial emittances that we will consider, the lens strengths (wavenumbers) are of course different for the same envelope match in a and $k_{0,0}$ shown in Fig. 2:

$$\frac{e_0}{k_{0,0} R_0^2} = \begin{cases} 0.03 & 0.1 & 0.9 \end{cases} \frac{1.172}{1.167} \frac{1.190}{1.110}$$

Figure 2: Magnetic transport line consisting of two solenoids showing the evolution of the rms beam envelope calculated from Eqn. 1.

As an example the initial space-charge wavenumber of a beam from a typical proton or H^+ source producing several tens of mA current at a few tens of keV energy might be $k_{s0} = 0.1 \text{ cm}^{-1}$ with initial mean square beam radius $R_0^2 = 0.1 \text{ cm}^2$. The source rms emittance in Fig. 2 would be $e_0 = 1 \text{ cm mrad}$, with $N_{source} = 100 \text{ cm}$ and $\beta_{RFQ} = 5 \text{ cm}$. The transport line length would be 60 cm.

To illustrate the effects of different amounts of space-charge field energy on beam mismatch, we present simulation results from our PIC code for the evolution of initially parabolic ($\rho \sim 1 - (r/a)^2$, $U = 0.0224$) and Gaussian ($\rho \sim exp(-r^2/\sigma^2)$, $U = 0.154$) beam density profiles through the transport line shown in Fig. 2. The results are not very sensitive to the initial divergence distribution. A Gaussian divergence distribution was used in these simulations with the initial rms emittance being $e_0/\sqrt{2} R_0^2 = 0.03, 0.1$ or 0.3. Gaussian distributions are truncated at two and a half times their rms size. The emittance oscillations through the magnetic transport line are shown in Fig. 3. To illustrate any universal trends, the emittance is displayed in terms of the same function used in Fig. 1. Typically the beam profiles become nearly uniform in the first lens and then hollow in the intermediate drift space. Here some rms emittance is converted back into space-charge potential energy. The beam returns to a uniform profile after the second lens. In the final focus where the RFQ entrance would be, the emittance decreases rapidly, and the beam becomes sharply peaked with a diffuse halo. The halo contains approximately ten percent of the beam with ninety percent of the beam being within one and a half rms radii. The emittance bounce between the two lenses and the emittance reduction in the final focus are less pronounced with increasing initial emittance and space-charge field energy. This is indicative of more rapid phase-space dilution.

Figures 4 and 5 show the evolution of α and $k_{0,0} \beta$, respectively, in the transport line when the initial emittance is $e_0/\sqrt{2} R_0^2 = 0.03$. The final focus region near $k_{0,0} = 6.1$ is magnified in Figs. 4b and 5b to illustrate the mismatch at the RFQ entrance. The mismatch in α and $k_{0,0}$ is a combination of emittance growth and differences in rms beam radii and divergences. At $k_{0,0} = 0$ the rms radius of the initially parabolic beam is only ten percent greater than the envelope prediction $(r^2)^{1/2}/R_0 = 0.123$ while that of the Gaussian is more than twice as great. This is partially due to the beam halos which for the parabolic beam extend to about three rms radii and for the Gaussian beam to about six rms radii.

The initial emittance growth rate for a drifting beam is simulated by giving each macroparticle an added initial transverse velocity proportional to its radial position (ballistic focusing). The corresponding initial tilt of the phase space ellipse is $a_{x0} = k_{0,0} R_0^2 = \sqrt{(r^2)^{1/2}/R_0 = 0.39}$ while that of the Gaussian is only six percent greater for the case illustrated in Figs 6 and 7. The beam halos for the parabolic and Gaussian beams extend to about two and three rms radii, respectively.

Figure 3: Emittance oscillations for initially parabolic (P) and Gaussian (G) beams with different initial emittances in a transport line containing two magnetic solenoids.

References

7. An initially expanding or contracting beam is simulated by giving each macroparticle an added initial transverse velocity proportional to its radial position (ballistic focusing). The corresponding initial tilt of the phase space ellipse is $a_{x0} = k_{0,0} R_0^2 = \sqrt{(r^2)^{1/2}/R_0 = 0.39}$ while that of the Gaussian is only six percent greater for the case illustrated in Figs 6 and 7. The beam halos for the parabolic and Gaussian beams extend to about two and three rms radii, respectively.

1068 PAC 1989
Figure 4: Evolution of α (a) through the transport line containing two magnetic solenoids and (b) in the final focus region near $k_{sz} = 6$ when the initial emittance is $\epsilon_0/k_{sz} R_s^2 = 0.03$.

Figure 5: Evolution of $k_{sz}(\beta)$ (a) through the transport line containing two magnetic solenoids and (b) in the final focus region near $k_{sz} = 6$ when the initial emittance is $\epsilon_0/k_{sz} R_s^2 = 0.03$.

Figure 6: Evolution of α (a) through the transport line containing two magnetic solenoids and (b) in the final focus region near $k_{sz} = 6$ when the initial emittance is $\epsilon_0/k_{sz} R_s^2 = 0.3$.

Figure 7: Evolution of $k_{sz}(\beta)$ (a) through the transport line containing two magnetic solenoids and (b) in the final focus region near $k_{sz} = 6$ when the initial emittance is $\epsilon_0/k_{sz} R_s^2 = 0.3$.