BEAM OPTICS REQUIREMENTS AND POSSIBLE PARAMETERS FOR OPERATING LEP

G. Guignard
LEP Division, CERN,
Geneva, Switzerland

1. Summary

For LEP Phase 1, the beam optics requirements are derived for injection, energy ramping, and flat-top. The requirements for tuning the insertions, controlling the orbits and betatron parameters, and for the use of wigglers magnets at lower energies are described. For the simple ramping scheme using a constant synchrotron tune, self-consistent sets of parameters have been calculated for injection and flat-top energies. At flat-top, the parameters are derived for the non-collision and collision cases. Recent estimates of the LEP transverse impedance and of the longitudinal tune, self-consistent sets of parameters have been discussed.

2. Basic assumptions for the calculations

The self-consistent sets of LEP parameters presented below are based on a certain number of assumptions which are briefly summarized. One important point is that the machine is supposed to be perfect, in the sense that the effects of non-vanishing orbit distortions and of multiple components, except the designed sextupoles, are not taken into account. It was verified that the simulated dynamic aperture is sufficient for the proposed parameters [1,2]. Another point is that possible performance enhancement with transverse reactive feedback is not considered and kept in reserve. Finally, the absence of bunch lengthening by collective effects is taken into account.

The longitudinal impedances and the related loss factors k_{hm} were revised for the copper cavities and for the vacuum elements like bellows, vacuum chambers, valves, collimators and sliding contacts. The higher mode impedances are related to the loss factors by the time T_B separating the bunches

\[Z_{hm}(\sigma_z) = k_{hm}(\sigma_z) T_B, \] (1)

and depend on the bunch length \(\sigma_z \). Assuming LEP running with 4 bunches, Table 1 summarizes the values retained for \(Z_{hm}(\sigma_z) \). For the actual calculations, a margin of about 10% was taken w.r.t. these values.

<table>
<thead>
<tr>
<th>(\sigma_z) (mm)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{hm}) (V/PC)</td>
<td>300</td>
<td>245</td>
<td>193</td>
<td>130</td>
<td>92</td>
</tr>
<tr>
<td>(Z_{hm}) (GΩ)</td>
<td>7.3</td>
<td>5.4</td>
<td>4.3</td>
<td>2.9</td>
<td>2.05</td>
</tr>
</tbody>
</table>

In order to take into account the actual beam blow-up due to beam-beam collisions, it has already been suggested to use an effective beam-beam tune shift \(\Delta Q \), which is different but depends on the unperturbed beam-beam tune shift \(\Delta Q_0 \). Simulation and phenomenology provide the means to calculate \(\Delta Q \) from \(\Delta Q_0 \) [3]:

\[\Delta Q = \Delta Q_0 \exp \left[\frac{\min \left(\Delta Q_0, \frac{1}{\beta} \right)}{B} \right] \]

where \(B \) is the damping increment, i.e. the amount of radiation damping between beam-beam collisions. Taking into account that the beams are separated in the non-experimental crossing points, the parameters in Eq. (2) can be chosen for LEP as \(A = 0.066, \Delta Q_0 = 0.06, \beta = 3.2 \times 10^{-2} \). The simple function (2) is valid for \(B > 1.48 \times 10^{-1} \), i.e. for damping times smaller than \(\sim 150 \) ms, which is satisfied in the cases considered.

The LEP beam current is limited by the transverse mode coupling instability and the well-known simplified criterion for the threshold current can be written [4]:

\[I_{th} = C \frac{E \Delta Q}{\sqrt{\Delta Q \cdot k_{hammer}}} \]

(3)

C is a constant, \(\Delta Q \) is a weighted average of the \(\beta \)-function where the impedances are and \(k_l(\sigma_z) \) is the transverse loss factor which also depends on the bunch length. Calculations of \(k_{hammer} \) were done recently for LEP and the threshold current was calculated as a function of the bunch length for particular LEP parameters [5]. Using numerical simulations, it was checked that the proportionality to \(E \) and \(Q_0 \) in Eq. (3) remains valid within \(\pm 5\% \) for the range of LEP parameters considered. Hence, it was possible to use Eq. (3) in order to compute the product of energy and synchrotron tune \(E \Delta Q_0 \) necessary for reaching 3 and 5 mA with 4 bunches at different \(\sigma_z \) (Fig. 1).

![Fig.1 - Threshold values of \(E \Delta Q_0 \) as a function of \(\sigma_z \) (TMCI)](image)

There are also two practical limits which have to be satisfied for LEP Phase 1. The first one concerns the RF power at cavity window which cannot exceed 14 MW, to compensate for radiation and higher mode losses. The second one is related to the beam lifetime. If the overall lifetime has to exceed 5 hours for runs of the order of 3.5 h, the quantum lifetime should not be smaller than 24 hours.

3. Beam parameters at injection

Let us start with the so-called nominal conditions which were defined by a beam current of 3 mA and a synchrotron tune equal to the one found for flat top conditions, i.e. \(Q_0 = 0.09 \). The curve of Fig. 1 indicates that for an injection energy of 20 GeV and a current of 3 mA, the bunch length must be at least equal to 38 mm. In order to reach this value of \(\sigma_z \),
all the wiggler magnets [6] (4 emittance wigglers at \(Q_x \neq 0\) and 4 damping wigglers at \(Q_x = 0\)) are excited to their maximum field of 1 T. In this way, the damping times are decreased and the wigglers contribute as much as possible to bunch lengthening. To lengthen bunches further, the value of the longitudinal damping partition number has to be \(J_o = 0.8\) (see Table 2).

Let us then study possibilities to have higher beam currents at injection energy. Fig. 1 shows that the threshold current increases when the bunch length and/or \(Q_x\) rise. Furthermore, keeping all wigglers at maximum field, the partition number \(J_p\) can be decreased to vary the energy spread \(\sigma_e\) and act on \(\sigma_z\). Two adjustment possibilities using \(J_p\) can be considered. The first one, consisting of decreasing \(J_p\) while keeping \(Q_x\) constant, is ruled out since both \(\sigma_e\) and \(\sigma_z\) increase and consequently the quantum lifetime \(T_Q\) decreases exponentially to reach too low values. The second one uses the fact that \(Q_x\) can be increased while \(J_p\) is reduced, in such a way that the bunch length remains constant and equal to the nominal value of 38 mm mentioned above. In this case, \(\sigma_e\) and \(Q_x\) increase, implying an increase of the bucket size and as a consequence of \(T_Q\). The results obtained are shown in Fig. 2 and \(T_Q\) is not a limitation anymore.

4. Beam parameters at flat-top energies

Let us start again with the nominal conditions which were defined by a beam current of 3 mA, an emittance ratio of 4% and an effective beam-beam tune shift of about 0.03. This means that the unperturbed tune shift must be \(-0.045\). With these data, it is interesting to look for the maximum energy satisfying the basic assumptions (Section 2). The horizontal partition number \(J_x\) must be adjusted for the given \(\Delta Q_0\), the bucket size must be such that \(T_Q\) - 24 hours and the energy can be increased until the necessary RF power reaches 14 MW with the higher mode impedances given in Table 1. Such a consistent set of parameters (with a minor deviation for \(\Delta Q_0\)) was found at an energy of 55 GeV and the estimated luminosity for the perfect machine is \(1.7 \times 10^{31}\) cm\(^{-2}\)s\(^{-1}\). These parameters and those at injection for 3 mA beams are published in the revised LEP parameter list [7].

The possible performance in an energy range between 30 GeV and 57 GeV (zero-luminosity maximum energy) was investigated for a beam current not exceeding 3 mA, a \(Q_x\) value of 0.09 and an unperturbed \(\Delta Q_0\) not larger than 0.06. The adjustable parameters are the RF voltage (bucket size) and the wiggler strength (bunch length) at lower energies. The values of Table 1 have to be used, the formula (2) and the criterion for transverse stability (Fig. 1) must be satisfied. Consistent sets of parameters have been found and are drawn in Fig. 3 together with the estimated luminosity. The nominal parameters are marked and the obligation to decrease the beam current above 55 GeV due to RF limitation is shown. The range of \(\sigma_z\)-values is indicated in Fig. 1, and \(\sigma_z\) exceeds 20 mm only for \(E = 30\) GeV.

The same investigation was pursued for the maximum current expected at injection without reactive feedback, i.e. 5 mA. The synchrotron tune \(Q_x\) is now added to the parameters which can be adjusted in order to satisfy all conditions, including the TMC threshold (Fig. 1). Consistent sets of parameters have been found and are drawn in Fig. 4 together with the estimated luminosity. The wigglers are now used up to \(\sim 50\) GeV.
and Q_{ϕ} reaches about 0.15. These estimates are somewhat optimistic, mainly for energies below 40 GeV where $\Delta Q_0 = 0.06$ was still applied. The range of ε_2-values is indicated in Fig. 1. Values of some of the parameters at 45 (Z_c-peak) and 55 GeV are given in Table 3.

Table 3 - Possible parameters at flat-top energies

<table>
<thead>
<tr>
<th>Beam energy (GeV)</th>
<th>45</th>
<th>45</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current (mA)</td>
<td>0.04/0.06</td>
<td>0.04/0.06</td>
<td>0.03/0.048</td>
</tr>
<tr>
<td>ε_2/Q_0</td>
<td>1.06</td>
<td>0.7</td>
<td>0.98</td>
</tr>
<tr>
<td>Bunch length (mm)</td>
<td>16.1</td>
<td>12.8</td>
<td>17.9</td>
</tr>
<tr>
<td>Synchrotron tune</td>
<td>0.108</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Vert. emittance (nm)</td>
<td>3.30/2.25</td>
<td>2.03/1.36</td>
<td>2.1/1.4</td>
</tr>
<tr>
<td>Hor. beam size at IP (r.m.s. in nm)</td>
<td><384/313</td>
<td><298/244</td>
<td><300/246</td>
</tr>
</tbody>
</table>

Where there are two values they correspond to colliding and separated beams, respectively.

5. Beam optics requirements

Optics requirements associated with the schemes described before are briefly summarized. At injection energy, one particular requirement comes from the needs of sufficient aperture in the interaction regions for betatron accumulation and of reduced sensitivity to vertical misalignments. Therefore, the experimental insertions are adjusted at 20 GeV to 3 times their nominal ε-values. Of course, during energy ramping the ε-values must be reduced again, while the beams are separated. Simultaneously, the residual beam-beam tune shifts ΔQ_{ϕ} must be kept under control so that the beam-beam tune spread remains smaller than $Q_{\phi}/2$. Starting from (y standing for x or z):

$$\Delta Q_{\phi} = \frac{\Delta \varepsilon y}{(E)^2 R_{\phi} \varepsilon z E},$$

the integrated field of the electrostatic separators is set to satisfy the condition mentioned at flat-top energy. In order to satisfy the condition at all energies, the product $\Delta \varepsilon y E$ must be kept constant during ramping, mainly in the horizontal plane which is more critical. Hence, εz-value must be reduced by a factor 3 when going up in energy from 20 to ~ 60 GeV. The εz-value is kept larger during the whole ramping to limit the risk of orbit distortions and can be reduced only when the flat-top is reached. Going from 20 GeV to any flat-top energy considered in Section 4 (Figs. 3 and 4), it is also necessary to control the tunes Q_x and Q_z to avoid synchro-betatron resonances. When Q_{ϕ} is kept constant (Fig. 3), it is sufficient to have a fixed working point distant from these resonances. However, when Q_{ϕ} is varied to increase the beam current at injection (Fig. 2) and to maximize the TMCI threshold (Fig. 4), the working point must be moved during ramping. It may even be necessary to cross synchro-betatron resonances (Fig. 5) which should be possible without beam losses as shown in recent numerical simulations [8]. Finally, the chromaticity has to be maintained between 0 and about 0.8 in order to avoid head-tail instabilities and the wiggle field must vary according to the values of Figs. 3 and 4.

Fig. 5 - Possible tune paths during energy ramping.

During ramping and on the flat-top, the orbit distortions and the perturbations of the betatron functions must be kept under control [9,10]. When beams collide, the luminosity has to be optimized to compensate for current losses either by increasing Q_{ϕ} if there is sufficient RF power or by decreasing the coupling from its nominal value of 4% to the expected minimum of ~ 1% due to residual vertical dispersion.

References

[8] S. Myers, Operating LEP to maximize the threshold current for TMCI, private communication (LEP Note 562).