DEVELOPMENTS OF THE CRYEBIS GENERATION AT ORSAY

J. Arianer, C. Goldstein, H. Laurent, M. Malard

Institut de Physique Nucléaire, BP N° 1 . 91405 ORSAY CEDEX . FRANCE.

Abstract

CRYEBIS 2 is completed. The project is described. Main features are: 50 keV-3.5 A decelerated electron beam, 5 T-1.6 m long superconducting solenoid at 2.3°K. The gun to reach 10^4 A.cm^-2 has been tested, and SILFEC 3, a smaller scale model of CRYEBIS 2, has been extensively used with a CW electron beam and joined cycles up to 6 kV 1 A. The deceleration of electrons is reliable (from 10 keV to 1.8 keV) and the production of atoms of metal species by means of a laser has been tested.

Introduction

CRYEBIS 2 is an EBIS devoted to atomic physics experiments and source development. The main goals are to produce fully stripped ions up to Xe 54+ and He-like ions up to U6+ with a particle intensity greater than 10^9 per second. Source development include control of very high density electron beams (E.B.) attained by super compression, production of metal ions, new ways of injection, new methods of collection.

To fulfill atomic physics requirements, a continuous E.B. of 50 keV-3.5A and a current density of 10^4 A.cm^-2 must be focused and collected, it must also be possible to bias the source and its control systems up to 50 kV. Extensive preliminary experiments are being made on the gun test bench and SILFEC 3, a smaller scale model of CRYEBIS 2, to avoid numerous technical adjustments on the main device. CRYEBIS 2 is duplicated for the Research Institute of Physics in Stockholm, Sweden (Swedish Ion Source project).

Description of the source

The general design resembles that of KRYON 2. Considering that the flexibility of the CRYEBIS 1 version with two separated cryostats is counterbalanced by a too much high LHe consumption for a laboratory device, we have turned back to a compact superconducting solenoid with a cold bore (0.1m inner diameter, 1.6m long, 5T). The temperature of the LHe cryostat is lowered to 2.3°K by pumping the bath for better hydrogen cryosorption and a cryogenerator is used to cool the two radiation shields of the vessel (20°K-80°K). The LHe consumption with the E.B. in operation is expected to be lower than 2 l per hour (with self-sustained coil current). The magnetic shield is 8 cm thick made of X6 steel with side flanges made of Armco. The drift tubes are located within the cold bore: a U-shaped aluminium structure contains the 37 stainless steel tubes connected to an external potential distributor. The other major differences with respect to CRYEBIS 1 concern the guns and the collection system. The final goal (50 keV-1.5A) will be reached in successive steps and by the use of several guns (Table 1), all of the external type. A complex mechanism allows adjustment of the gun cathode in any direction versus the anode and the entire electron gun is movable along the source axis.

<table>
<thead>
<tr>
<th>GUN</th>
<th>NC1</th>
<th>PAN1</th>
<th>FRENCH1</th>
<th>NC4</th>
<th>PAN2</th>
<th>NC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max voltage (kV)</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>40</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Max intensity (A)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3.5</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Max average density (A.cm^-2)</td>
<td>10^3</td>
<td>7.10^3</td>
<td>3.10^3</td>
<td>10^4</td>
<td>10^3</td>
<td>10^4</td>
</tr>
<tr>
<td>Cathode diameter (mm)</td>
<td>36</td>
<td>36</td>
<td>18</td>
<td>12.7</td>
<td>12.7</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 1 - Gun characteristics at 5T.

The cathode may be retracted behind a gate valve to preserve it from the air entrances. The collection is assumed by a decelerating monostage collector able to dissipate 20 kW, making use of the hypervaporization effect: demineralized cooling water is evaporated at the hot surface and subsequently condensed by a fast cylindrical laminar flow. The injection of the material to be ionized is not yet optimized and several possible methods will be successively tested on the two sources (KYS and CRYEBIS) during the first weeks of experiments for the gases - the "traffic controller system" suggested by Dunets a - a pulsed valve making use of the Lorentz force close to the middle drift tube.

© 1983 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

Preliminary experimental results

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.

The final figures of merit of the source strongly depend on the feasibility of a long containment time and E.B. deceleration. We have used the gun test stand to try out the monostage collecting geometry:

- laser beam stimulated desorption of a condensate.
- evaporation by means of an infrared laser.
- vacuum spark evaporation.
- as suggested by Becker, an ion beam-target interaction.
- a transverse focused jet.

The source is outlined in Fig. 2 (a LHe refrigerator system is connected on-line with the SIS and thus the chimney is somewhat different). On Fig. 3 the experimental area with the source platform is shown. All the E.B. focusing electrodes are referenced to the cathode voltage and thus most of the power supplies are located on a second insulated platform biased at the cathode potential. The ion species will be selected either by a 4m long time of flight spectrometer or by a magnetic analyzer.
Evaporation of atoms of the metals by laser interaction is working on another test stand before to be experimented on SILFEC 3. The position of the lens may be optimized by measuring the electron flux emitted from the target which is maximum in the focal plane. The reflected power is then minimized but still high enough to heat any nearby surface. The injection tube (at 20°C) should thus rather be a grid for lower interception. At 8 J, 40Hz, the temperature of the target may reach 200°C.

Acknowledgments

The authors have the pleasure to thank S. Buhler and the cryogenics division, T. Junquera and the electronics division, Liebe A., Truong M., Briant M., Serafini A., Mac Farlane J., Steinegger A., Collart C., Nicol P., Le Scornet J.C., Mormiche M., Mathieu C., Baixas J. for their indefatigable dynamism. Stimulating discussions with our Swedish colleagues, mainly Dr S. Borg, have clarified many problems, and are greatly acknowledged.

Expected characteristics

The expected yield in the cyclotron mode, i.e., with joined source cycles is shown on Fig. 4. For an expulsion time up to 5 msec, the feasibility of which is now perfectly established, a duty-cycle within the range 10-50 % is realistic. The anomalous E.B. compression with ions now observed several times, will probably enhance these yields.

Fig. 4. CRYEBIS 2 yields in the cyclotron mode.

The source now completed (superconducting solenoid and shorting bridge tested at 6 T) would deliver ions up to A18+ in September 83, up to Xe54+ in September 84, and up to U80+ in September 85. For the SIS E.B. is foreseen in December 83.

Salaries excluded, the total cost of CRYEBIS 2 and the experimental area is 2.4 MFF. "Manpower" used corresponds to 40 persons-year.

References

1) ARIANER J. et al., IEEE Trans. Nucl. Sc. NS 26-3 (1979) 3713
4) GOLDSTEIN Ch. & MALARD M., Proc. 2nd. EBIS Workshop, Orsay-Saclay (1981) 149
6) BECKER R., private communication (1982)
8) GOLDSTEIN Ch. et al., Proc. of the 1st. EBIS Workshop Darmstadt (1977) GSI report P-3-77, 54
9) PIERCE J.R. & WALKER L.R., J.A.P. 24-10 (1953) 1328
11) OLIVIER M. et al., Proc. of the 7th Conf. on the Appl. of Acc. in Res. and Ind. Denton (1982) to be published