PRODUCTION OF NEGATIVE PIONS OF MEDICAL INTEREST BY HIGH-ENERGY PROTONS*

D. Berley, L.N. Blumberg, D.C. Bonar, K. Fairchild, J.D. Fox, W-C. Law, D.M. Lazarus
Y.Y. Lee, C.L. Wang, Brookhaven Nat'l Laboratory, Upton, L.I., N.Y.

Abstract

Improvements in intensity and availability of extracted proton beams from high energy accelerators lead to the possibility of forming negative pion beams useful for treating deep-seated cancers. To optimize pion fluxes and design parameters for such beams, an experiment was performed at the Brookhaven Alternating Gradient Synchrotron to measure yields of negative pions produced by protons of 6 to 17 GeV/c incident on targets of different thickness and material. Measurements were made at production angles between 0° and 30° for pion momenta from 150 to 350 MeV/c. A dose rate of 24 rads/min in a 100 cm² field is attainable at the Alternating Gradient Synchrotron or the Brookhaven National Laboratory.

Introduction

It has now become possible to treat deep-seated tumors with charged particle radiotherapy. Negative pions are particularly attractive for this application as the Bragg peak at the end of their range is enhanced by the disintegration of the nucleus into which the negative pions are captured. This results in a large ratio of dose at the end of the range (at the tumor) to that delivered to healthy tissue through which the particles pass in reaching the tumor. Interest in radiotherapy using negative pions has recently been stimulated by estimates of the π⁻ fluxes expected at the Los Alamos Meson Physics Facility (LAMPF) when it comes into operation and presently available at the AGS.

The only published measurement of the production of negative pions with momentum below 500 MeV/c at a multi-GeV accelerator is that of Fitch, Meyer and Titchener who obtained .09 and .05 π⁻ per steradian per GeV/c per circulating proton produced at 45° and 90° respectively, relative to the beam incident on the internal target at the AGS. More recently a measurement of 200 MeV/c π⁻ production has been made at the AGS at 18.8° to the internal target which gave a production of 4.4 π⁻ per steradian per GeV/c per interacting proton.

No data exist regarding the enhancement of low-energy pion production by nuclear cascade although the effect is expected, and the expectation is supported by a Monte Carlo calculation.

The useful negative pion intensity that can be delivered to a tumor with minimum damage to surrounding healthy tissue depends, of course, on the beam transport to the patient, as well as the pion production. However, the beam parameters can be calculated to an adequate level of precision whereas it is at present important to have a better knowledge of the production cross section, \(N_{\pi^-} \), and the cascade enhancement.

We have measured the negative pion production by protons in the pion momentum range 150 MeV/c to 350 MeV/c at three proton momenta, 6, 12 and 17 GeV/c. Data was obtained at four production angles from 0° to 30° for three target materials Al, Cu and W. The dependence of pion yield on target length was investigated.

* Work performed under the auspices of the U.S. Atomic Energy Commission.

The measurements were carried out in the East Test Beam at the AGS. The beam is at 4.7° in the internal target and it transported 10⁶ to 10⁷ protons per AGS cycle to our production target. The protons in this beam were available over a momentum range of 2 to 17 GeV/c with a transmitted momentum band of ± 2%.

The experimental arrangement is shown in Fig. 1. The protons were incident on the production target after passing through the Cherenkov counter, filled with Freon 12, which identified positive pions in the beam. The tertiary positive pions from the target were momentum analyzed by the 72D18 (72-in. by 18-in. by 12-in. gap) spectrometer magnet and four pairs of scintillation counter hodoscopes. The spectrometer magnetic field was mapped both in and out of the median plane. The floating wire technique was used as a momentum calibration determining the positions of the hodoscopes. The secondary particles were bent through 45°.

Each hodoscope pair consisted of an upstream array of three 1-in. by 3-in. scintillation counters \(U_j \), \(D_j \), and a downstream array of four 2-in. by 8-in. counters \(D_k \) - \(D_s \) as shown in Fig. 2. Each combination of counters \(U_j \), \(D_j \) gives an angular resolution of 1.8° corresponding to a momentum resolution \(\Delta P/P = 0.06 \). The event trigger used in the experiment was

\[S_1S_2S_3U_1D_1D_2 \]

where \(j = i \) or \(i + 1 \)

This produced a momentum acceptance \(\Delta P/P = 12% \). The region between the target and the downstream hodoscopes was enclosed in multiple Coulomb bags in order to reduce multiple Coulomb scattering. Negative pion secondary particles were identified by their time of flight for the 16-ft trajectory between the beam counter \(S_3 \) and a 2-in. by 8-in. scintillation counter placed immediately behind each downstream hodoscope \(D_k \). Peaks in the time of flight spectra corresponding to electrons and negative pions were observed. In order to separate the peaks cleanly, the outputs of the beam timing counter \(S_2 \) (XP1020 photomultiplier tube) and the downstream timing counters \(D_k \) (56AVP photomultiplier) were clipped and zero crossing discriminators were used. The 8-in. length of the scintillators in the downstream timing counters would introduce a 2/3 nanosecond difference in transit time between particles incident at the end near the photomultiplier and those incident at the far end. This was reduced by using the downstream hodoscope counters \(D_k \) to determine which half of the timing counter the particle passed through and introducing a suitable delay (.3 nanosecond) between signals from the two halves before routing them to the time to pulse height analyzer.

Simultaneous time of flight spectra were taken for the four hodoscopes and stored in a 1024 channel pulse height analyzer. A time of flight resolution of .6 nanosecond was achieved. A 200 MeV/c spectrum for 10⁷ production by 6 GeV/c protons is shown in Fig. 3.

Data and Analysis

Table I indicates the matrix of proton and pion momenta studied along with target information. The...
data is tabulated in Table II.

In a given time interval the number of negative pions \(N_p \) detected in a downstream timing counter \(D_t \) is

\[
N_p = N \gamma \Delta \phi \exp(-L/\gamma \phi) \tag{1}
\]

where \(N \gamma \) is the number of protons incident on the target in the time interval as defined by the beam counters, \(\gamma \) is the number of \(\pi^- \) produced in the target, \(\Delta \phi \) is the acceptance of the holographic timing counter combination and the exponential factor is the decay factor. \(L \) being the time of flight path length or the proper time decay length, 780.2 cm, for charged pions, \(\gamma = 1 - \exp(-L/\phi) \). The yield \(Y \) was determined from the measurements of the other parameters in Eq. (1). \(N_p \), the number of beam protons was corrected for accidental by recording \(S_1, S_2, S_3 \) where the prime indicates \(S_3 \) was timed out of coincidence with the other beam counters. The maximum accidental rate was 2% for the beam counters and the positive pion contamination was less than 1%. The acceptance \(\Delta \phi \) was computed with a Monte Carlo program which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

The acceptance \(\Delta \phi \) was determined by Monte Carlo calculations which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

The acceptance \(\Delta \phi \) was determined by Monte Carlo calculations which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

The acceptance \(\Delta \phi \) was determined by Monte Carlo calculations which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

The acceptance \(\Delta \phi \) was determined by Monte Carlo calculations which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

The acceptance \(\Delta \phi \) was determined by Monte Carlo calculations which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

The acceptance \(\Delta \phi \) was determined by Monte Carlo calculations which integrates the force equation along particle trajectories through the field of the spectrometer magnet. A complete tabulation of the field of the spectrometer magnet was generated from the map of the vertical component of magnetic field in the median plane by symmetry and the requirements that curl \(B \) = 0 and div \(B \) = \(n \). The large bending angle of 300° introduces large vertical focusing effects producing an increase in \(\Delta \phi \) of up to 100% over the geometrical acceptance.

Discussion of Results

The results of our measurements are summarized in Figs. 4 - 6, where the dependences of \(\pi^- \) production on incident proton momentum, pion momentum and on target thickness are shown. The thick target effects are the following:

1) Nuclear-meson cascade production: The high-energy secondaries produced by each interacting proton will interact with other nucleons in the target to produce secondaries, etc.

2) Target as degrader: Pions undergo appreciable energy loss in the target and the observed pions must therefore have been produced at higher momenta, and thus with higher probability.

3) Self-absorption by the target, which removes low momentum pions from the beam, is an increasing function of target thickness.

4) Multiple-scattering which is also an increasing function of target thickness, tends to obscure the angular dependence of pion production.

Measurements were made to investigate the "thick target effects" for the production of 200 MeV/c pions. Figure 4 shows that at an incident proton momentum of 6 GeV/c, 6-in. of Cu is the optimum target thickness. The same thickness is almost optimum for 17 GeV/c incident protons. The angular variation plot of Fig. 5 shows that for a thick target negative pion production is nearly isotropic over our range of measurement. However, the \(e^-/\pi^- \) ratio drops rapidly with increasing angle. Figure 6 shows that for 6-in. Cu target, pion yield increases with both pion momentum and incident proton momentum.

In order to extrapolate to higher AGS energies, smooth curves were drawn through data points for 6, 12, and 17 GeV/c incident proton momenta and then the yield was plotted as a function of proton momentum as shown in Fig. 7. It was then extrapolated linearly to 30 GeV/c. Figure 8 shows the yield rate obtained from the AGS under the present operating conditions (6 x 10^10 protons/sec) as a function of pion momentum computed for a hypothetical beam 10 m long of 25 m rad acceptance. It is evaluated from the expression

\[
D = \gamma \Delta \phi \exp(-L/\gamma \phi) f_s \tag{2}
\]

where \(\gamma = \text{decay rate (rad/sec)} \), \(L = \text{beam length (10 m)} \), \(\phi = \text{decay length for pions (\mu m)} \), \(f_s = \text{fraction surviving interactions in degrader before coming to rest} \), \(E_s = \text{energy deposited at end of stopping range (60 MeV) including Bragg peak ionization and the star resulting from pion capture} \), \(\Delta = \text{cross section area of beam (100 cm}^2 \) for this calculation) \(t = \text{longitudinal dimension of stopped pion region in tissue} \), \(c = 6.25 \times 10^7 \text{ MeV/g, assuming tissue density = 1 g/cm}^3 \) for this calculation \(Y = \text{pion yield/sr/(GeV/c)/incident proton} \), \(\Delta = 25 \text{ mrad geometrical acceptance} \), \(\Delta \phi = \text{pion momentum acceptance} \), \(\Delta = \text{range spread, AR, which is a function of pion momentum is just the longitudinal dimension} t \text{ of the tumor volume. If one parameterizes the range in a power law of } T, \text{ pion kinetic energy, as } \Delta = \Delta \phi^\alpha, \text{ then} \)

\[
\Delta \phi = \frac{T_m}{p} = \frac{\Delta \phi^\alpha}{p} \tag{3}
\]

where \(m_p \) and \(p \) are pion mass and momentum respectively.

The fraction of pions surviving interactions with degrader material is estimated with the expression

\[
f_s = \exp[-N_{\text{coll}} \sigma T \delta T / D \Delta x] \tag{4}
\]

where \(T = \text{kinetic total energy of pion at entrance to degrader} \), \(\sigma = \text{total interaction cross-section} \), and \(N = \text{number of atoms/cm}^3 \).

We have assumed the degrader has the density of body tissues of 1 gm/cm^3 with average properties equivalent to that of carbon. The resulting dose vs pion momentum relationship has a maximum at about 200 MeV/c.
with a rate of 24 rads/min in a field of 100 cm². This
dose rate is considered quite adequate for the clin-
ical use of negative pi-meson in radiotherapy.

Table III lists the proton fluxes and dose rate
from various accelerators in this country. At this
time, the Los Alamos Scientific Laboratory is com-
mitted to a clinical trial of negative pion tumor therapy.
When their 800 MeV proton linac operates at the design
intensity of 6x10⁶ protons per sec., the biomedical
channel would have a dose rate of 35 rads/min in a
100 cm² field. A comparable flux of 24 rads/min would
be obtainable from the AGS of the Brookhaven National
Laboratory with the proton intensity which is avail-
able now. The pion fluxes available at the ZGS and Bev-
ston were computed on the basis of the pion yield data
from this work and the maximum proton intensities as
indicated. However, machine improvement programs are
underway in all these laboratories; it is quite likely
in the future that pion radiotherapy can be done at
several locations around the nation.

Acknowledgment

We wish to thank H.L. Atkin, V.P. Bond,
E.P. Cronkite and F.E. Mills for their interest and
encouragement, and T.J. Blair for his assistance
during the experiment. We are in debt to G. Bennett,
G. Levine and W. Moore for their support. The
interest of R. R. Pau was important in initiating
this measurement. The excellent service from the
AGS control room staff: J. W. Glenn, A. Watts,
A. McGarry, G. Cornish and J. Gabusi was essential
for the success of this experiment. The cooperation
of D. Nygren and J. Christenson of the Columbia/NYU/
CERN group was appreciated.

References

1. V.P. Bond, Am. J. Roentgenology, Radium Therapy and
Nuclear Medicine 111, 9 (1971).
3. D. Bassano, D.M. Lazarus and C.L. Wang, BNL Accel-
4. Proposal for the Use of the Brookhaven National
Laboratory Alternating Gradient Synchrotron for
Pi-minus Meson Therapy, BNL 1971.
Pion Channel: a Preliminary Report," MP-7-34
(1971).
FIG. 4. Negative pion production as a function of target thickness.

FIG. 5. 200 MeV/c negative pion production as a function of laboratory emission angle. The electron-pion ratio, measured at 16 ft flight path, is also presented.

FIG. 6. Negative pion momentum spectrum.

FIG. 7. Negative pion production as a function of incident proton momentum derived from Fig. 6. Error bars are not shown.

TABLE I

<table>
<thead>
<tr>
<th>Proton Momentum (GeV/c)</th>
<th>12</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Al(I), Cu(I), W(I)</td>
<td>Al(I), Cu(I), W(I)</td>
</tr>
<tr>
<td>200</td>
<td>Al(I), Cu(I), W(I)</td>
<td>Al(I), Cu(I), W(I)</td>
</tr>
<tr>
<td>250</td>
<td>Al(I), Cu(I), W(I)</td>
<td>Al(I), Cu(I), W(I)</td>
</tr>
<tr>
<td>300</td>
<td>Al(I), Cu(I), W(I)</td>
<td>Al(I), Cu(I), W(I)</td>
</tr>
<tr>
<td>350</td>
<td>Al(I), Cu(I), W(I)</td>
<td>Al(I), Cu(I), W(I)</td>
</tr>
</tbody>
</table>

Summary of negative pion yield measurements. The subscript in parenthesis denotes: E = one interaction length, I = as function of target thickness, T = 0.25" target.
<table>
<thead>
<tr>
<th>E/Pi</th>
<th>P/Ei</th>
<th>Target</th>
<th>0 Degrees</th>
<th>Yield</th>
<th>Error</th>
<th>E/Pi</th>
<th>Yield</th>
<th>Error</th>
<th>E/Pi</th>
<th>Yield</th>
<th>Error</th>
<th>E/Pi</th>
<th>Yield</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>250</td>
<td>2.5%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>1.25%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>0.625%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>0.312%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
</tbody>
</table>

TABLE II: SUMMARY OF RESULTS OF PION PRODUCTION MEASUREMENT

<table>
<thead>
<tr>
<th>E/Pi</th>
<th>Yield</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>250</td>
<td>2.5%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>1.25%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>0.625%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>0.312%</td>
<td>0.032</td>
<td>0.012</td>
<td>46.28</td>
<td>0.035</td>
<td>0.002</td>
<td>4.45</td>
<td>0.030</td>
<td>0.002</td>
<td>4.60</td>
<td>0.028</td>
<td>0.002</td>
<td>6.51</td>
</tr>
</tbody>
</table>

TABLE III: SOURCES OF NEGATIVE PIONS

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Maximum</th>
<th>rad/min. in 100 cm² field</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMPF</td>
<td>6 x 10¹³</td>
<td>35</td>
</tr>
<tr>
<td>A.G.S.</td>
<td>6 x 10¹²</td>
<td>24</td>
</tr>
<tr>
<td>S.G.D.</td>
<td>1.2 x 10¹²</td>
<td>2</td>
</tr>
<tr>
<td>Bevatron</td>
<td>1.4 x 10¹²</td>
<td>1</td>
</tr>
</tbody>
</table>