A POLARIZED ION SOURCE FOR THE BERKELEY 88-INCH CYCLOTRON

A. U. Luccio,† D. J. Clark, D. Elo, P. Frazier, D. Morris and M. Renkas

Lawrence Radiation Laboratory, University of California, Berkeley, California 94720

A polarized proton and deuteron source for the Berkeley 88-inch cyclotron has been built and presently is being tested. The source, of the "atomic beam" type, is mounted vertically above the cyclotron, its beam being injected axially into the machine through a hole in the upper yoke. The axial injection system is described elsewhere. The source is of rather conventional design. Our main aim has been to use the best features of the most successful sources in operation in various laboratories, making improvements in design as far as possible. This provides a dependable design, flexible enough to leave room for future developments of the various parts.

Principle of Operation

An atomic beam of hydrogen or deuterium is produced by dissociating H2 or D2 gas in a discharge tube, and by collimating the beam with a series of diaphragms in a differential vacuum system.

The beam is injected into a sextupole magnetic field, where it is split into its hyperfine-structure (hfs) components. Half of the components (two for hydrogen, three for deuterium) converge toward the symmetry axis of the field and are transmitted; the other half is lost against the sextupole magnet and the vacuum enclosure walls. At the end of this stage, in a weak magnetic field the beam would be only partially polarized.

Full polarization is achieved by the adiabatic passage method as follows: the atomic beam passes through an oscillating magnetic field of the proper frequency and polarization, superimposed on a static magnetic field which presents a low longitudinal gradient. In this field transitions among the hfs states are induced.

The fully polarized atomic beam is thereafter ionized by electron impact in a static magnetic field. The ions are extracted, accelerated and focused at a location suitable for the injection into the cyclotron.

Means are provided to measure the density of the atomic beam and the ion current. A simple polarimeter allows one to measure the deuteron tensor polarization. The vector polarization of the proton and deuteron beam cannot be measured by simple means at low energies.

The source has been designed to give up to 10 μA of protons and deuterons with energy up to 20 keV and polarization ± 1 (protons), ± 2/3 (deuterons, vector), ± 1 (deuterons, tensor).

The Dissociating Unit and the Atomic Beam Forming System

The overall feature of the source, on the cyclotron vault shielding roof is shown in the Figs. 1 and 2.

The first element from the top is the "hairpin" pyrex dissociator tube, in which H2 and D2 molecules are dissociated into atoms. The dissociating discharge is of the electrodeless type, driven by a 1.5 KW, 20 MHz self-excited oscillator, capacitively coupled to it. The use of this type of oscillator has proved convenient, since its operation remains stable during rapid variations of the physical parameters of the discharge, such as pressure and temperature. The gas is admitted to the discharge tube through a remote gas metering valve, coupled with an automatic pressure regulator. Operating pressure in the discharge is in the range of 2 Torr, with gas flow in excess of 100 atmos. per minute.

The atomic beam is formed and collimated by three orifices. The first, placed at the end of the glass tube, shows a double-conical shape and the vacuum enclosure walls. At this pressure the mean free path of the hydrogen atoms is about 1 cm. The gas flow out of the third orifice, located at the sextupole entrance has a diameter of 3 mm and is 7 cm away from the second. Second and third orifices are pierced through tantalum inserts, the choice of Ta being suggested to minimize possible damaging effects by the ions outstreaming from the dissociator.

Pressure inside the Laval nozzle arrangement is 10⁻² Torr, maintained by an 8x10⁶ l/min blow-out. At this pressure the mean free path of the hydrogen atoms is about 1 cm. The gas flow out of the discharge tube is of 2.8 l/sec, the gas pressure is 10⁻¹⁰ Torr, maintained by two 10¹⁰ L/sec diffusion pumps with Freon and LN baths. The choice of He instead of oil diffusion pumps has been made to avoid the polymerization of vacuum oil due to the very reactive atomic hydrogen.

The sextupole--and r.f. transitions housing is evacuated by means of an 10¹² l/sec diffusion pump. Operating pressure in this region is of the order of 7 x 10⁻⁷ Torr. The neutral beam intensity is monitored here with a compression gauge, consisting of an ion gauge fitted to a bottle furnished with a 0.5 cm diameter x 10 cm length intake tube. The pressure rise in the gauge with the beam "on" is proportional to the beam density. The collimation and the shape of the beam is checked costly with Mo targets, sensitive to atomic hydrogen. At the end

* Work performed under the auspices of the U.S. Atomic Energy Commission.
† On leave of absence from the University of Milan, Milano, Italy.

© 1969 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
of this section, the polarized beam shows a cross section less than 1 cm in diameter (see next).

The ionizer housing is evacuated by a 1500 l/sec electro-ion pump at a pressure of the order of 10^{-8} Torr. To avoid as far as possible the presence in the ionizing region of unpolarized hydrogen from the background and contaminations of oil vapors and water, the ionizer is surrounded by a double wall enclosure cooled with LN. An LN baffle with an axial channel is also provided at the ionizer housing entrance, from the sextupole side, which presents a very high impedance to gas background and practically zero impedance to the beam.

The Sextupole

The sextupolar lens is shown in Fig. 3. The electromagnet yoke is 40 cm in diameter and 50 cm in length. The magnetic gap is longitudinally tapered from 7 mm at the entrance to 15 mm at the end, and its shape is accomplished by means of six 12-turn coils, water cooled, wound around each pole and fed by a 50V 200A DC power supply, stabilized within few percent. The pole tips are assembled in a single unit and are removable to allow for future improvements.

In a perfect sextupole, the field components are:

\[E_0 = B_0 \left(\frac{r}{r_0} \right)^2 \cos 2\theta \]
\[E_r = B_0 \left(\frac{r}{r_0} \right)^2 \sin 2\theta \]

In this field, the radial force acting on a neutral atom of magnetic moment \(\mu \) is:

\[F = -\nabla = -\nabla \cdot \nabla B = -2u \left(\frac{B_0}{r_0^3} \right) r \]

provided that \(B \) is strong enough to allow one to disregard the dependence of \(\mu \) itself on \(B \).

In the sextupole strong field \(\mu \) equals + one Bohr magneton for two hfs components of hydrogen out of four, and three of deuterium out of six. For these components the force is focusing and harmonic. The presence of other field harmonics than the 3rd (sextupole) induces different forces on the beam. Higher order harmonics, multiples of 3, are usually present, since they derive from the shape of the pole tips, which are different from the 3rd order hyperbolas of a perfect sextupole. Lower order harmonics come from defects of manufacture.

The sextupole field has been measured at various locations along its axis, by means of a set of rotating coils with one side on the axis, and a current integrator and recorder. Fourier analysis of the measured curves has been done, showing that components other than the 3rd have amplitudes of only a few percent of the 3rd harmonic. The harmonic content does not seem to depend much on the absolute value of the field.

The sextupole focusing effect on the beam is shown by the MoO pictures of Fig. 4, taken with the sextupole "off" and "on", at a position some 50 cm downstream from the sextupole, at the ionizer location.

The R.F. Transitions

Vector and tensor polarization, \(P_z \) and \(P_{zz} \), can be defined in the following way:

\[P_z = \frac{N_+ - N_-}{N_0} \quad P_{zz} = \frac{N_+ N_0 - N_- N_0}{N_0} \]

\(N_+, N_-, N_0 \) are the occupation numbers of the hfs states.

With reference to the energy diagrams of Figs. 5 and 6, the hydrogen and deuterium atoms after the sextupole occupy the two and the three upper states respectively. Their polarization, in a strong magnetic field such as the cyclotron's, would be zero. To achieve complete polarization the following system of adiabatic transitions has been adopted:

Protons:

\(1 \rightarrow 3, \) 8 gauss, 7.5 MHz, which yields: \(P_z = -1 \)

Deuterons:

\(1 \rightarrow 4, \) 8 gauss, 7.5 MHz, \(P_z = -1/3 \), \(P_{zz} = 0 \)

\(3 \rightarrow 5, \) 80 gauss, 331 MHz, \(P_{zz} = 1/3 \)

Note in addition that: i) the beam is ionized in a strong axial magnetic field; by reversing the direction of the field the vector polarization changes its sign; ii) the deuteron tensor polarization is not pure. However, in doing experiments with this beam, it will be possible to subtract the results (such as the cross sections) for the last two cases, to eliminate the vector contribution.

The two transitions, weak field (8 gauss) and intermediate field (80 gauss), are to be operated one at a time. We regard this as a considerable advantage over other systems which should use various transitions at the same time in different combinations.

The two transition magnets are much the same. They have been designed as plug-in units, inserted in their place through a port in the sextupole housing side. With this arrangement the two units can be removed in a matter of minutes.

In the weak field transition, the oscillating magnetic field should be polarized perpendicularly to the static, adiabatic, field. It is produced accordingly by a 1 cm diameter-turn 3 cm long coil through which the beam passes. The 7.5 MHz oscillator is a very small unit completely contained in the vacuum.

In the intermediate field transition, the oscillating field must be parallel to the static field. Therefore it is produced by a hairpin loop, formed by a couple of 3 cm long plates parallel to the beam, bridged at one side. The 300-400 MHz oscillator is of the tuned-plate, tuned-grid type (150 W output) and is connected to the coil by a 1.5 m long cable.

The Ionizer

The ionizer has been manufactured by ANAC company, according to the Auckland University (New Zealand) design. The atomic beam is ionized by electron collision in a cylindrical region 1 cm diameter and 6 cm
long, where a 2,000 gauss magnetic field parallel to the axis is present. The sign of this static field can be reversed to allow changing the sign of the polarization of the beam.

The electrons are produced and accelerated to about 500 volt at the entrance side of the device. A negative voltage at the exit end (about 2 kV) repels the electrons back, so that they can oscillate back and forth throughout the "ionization column", being confined in a cylindrical sheet by the action of the magnetic field. The negative electrodes provide as well the extraction of the positive ions from the ionizer, and the positive beam is shaped and properly accelerated by means of a subsequent system of electrostatic lenses.

The energy of the ion beam from the ionizer might be a given fraction of the Dee voltage in the cyclotron, to provide centering of the first orbits on the center of the machine. Moreover, as a study of the axial injection system has shown, the best results can be obtained accelerating this beam at definite values of its energy for every final energy in the cyclotron. Accordingly, the ionizer voltage with respect to ground, which defines the ion energy, must be varied over a wide range, from 2 to 20 kV.

This requirement means an achromatic optical system for the ionizer, that was not provided with it, to give a waist at the entrance of the axial transport line over this energy range. To solve the problem, the original ionizer optics has been modified by adding a third cylindrical electrode to the "focus" gridded lens... The negative electrodes provide as well the extraction of the positive ions from the ionizer, and the positive beam is shaped and properly accelerated by means of a subsequent system of electrostatic lenses.

The energy of the ion beam from the ionizer might be a given fraction of the Dee voltage in the cyclotron, to provide centering of the first orbits on the center of the machine. Moreover, as a study of the axial injection system has shown, the best results can be obtained accelerating this beam at definite values of its energy for every final energy in the cyclotron. Accordingly, the ionizer voltage with respect to ground, which defines the ion energy, must be varied over a wide range, from 2 to 20 kV.

This requirement means an achromatic optical system for the ionizer, that was not provided with it, to give a waist at the entrance of the axial transport line over this energy range. To solve the problem, the original ionizer optics has been modified by adding a third cylindrical electrode to the "focus" gridded lens... The negative electrodes provide as well the extraction of the positive ions from the ionizer, and the positive beam is shaped and properly accelerated by means of a subsequent system of electrostatic lenses.

The tensor polarization of a deuteron beam can be evaluated at low energy, by measuring the asymmetry of the neutrons produced by the reaction: $^3\text{He}(d,T)^4\text{He}$. The number of neutrons produced at an angle θ is related to F_{zz} by:

$$A(\theta) = \frac{d(\theta)}{d(0)} = \frac{1 - F_{zz}/2}{1 - (3 \cos^2 \theta - 1)F_{zz}/4}.$$

On this line, a very simple polarimeter has been built, as a plug-in unit, which we believe could prove very useful to check the source performance. The polarimeter consists of a water cooled tritium target holder and two plastic scintillators with phototubes. The tritium target is tilted at 45° respect to the deuteron beam. The scintillators are placed to count neutrons at 0° and 90°. In this case we get:

$$A(90^\circ) = \frac{(1 - P_{zz}/2)(1 + P_{zz}/4)}{(1 - P_{zz}/2)(1 + P_{zz}/4)}.$$

The polarized ion source and the axial line controls have been gathered together in a 5-rack console plus other racks, by the side of the system above the cyclotron vault shielding roof. Some of the most important controls will be also operated remotely from the cyclotron control room. Controls include:

- a vacuum system general panel with vacuum gauge and safety interlocks;
- gas handling system controls;
- dissociator power control;
- sextupole current and adiabatic transitions magnets and oscillators control;
- ionizer interelectrode and overall voltage control;
- ionizer emission control.

References

Preliminary Results

Complete assembling of the source has been done in the past month. In the first operation of the system a neutral beam in excess of 10^{16} sec/cm² has been measured with the compression gauge and a polarized deuteron current of 2μ has been detected 50 cm past the ionizer. Work is in progress to increase the beam intensity and to reduce the background. The operation of the whole system has proved so far very satisfactory.
Fig. 1. Polarized ion source. Assembly drawing.

Fig. 2. General view of the source. The screening cage of the high-voltage section has been partially removed to show the ionizer box.

Fig. 3. Sextupolar magnetic lens with removable pole tips.
Fig. 4. MoO pictures of the hydrogen beam with the sextupole "off" and "on".

Fig. 5. Hyperfine structure levels of hydrogen.

Fig. 6. Hyperfine structure levels of deuterium.