DIFFERENTIAL ANALYSIS OF MAGNETIC FIELD MEASUREMENTS WITH APPLICATIONS

Jonathan D. Young
Lawrence Radiation Laboratory
University of California
Berkeley, California

Summary

This report describes the use of cubic spline fitting to compute, for the median plane $z = 0$, the vertical magnetic field component, $B(u, w, 0)$ and its first, second, and third partial derivatives from a set of measurements of B at mesh points (u_i, w_i). The arguments (u, w) may be either rectangular (x, y) or polar (ℓ, R).

The results of the fitting are used for a third-order approximation of the field components $B(u, w, 0)$ and its first, second, and third partial derivatives from a set of measurements of B at mesh points (u_i, w_i). The arguments (u, w) may be either rectangular (x, y) or polar (ℓ, R).

The fitting can be applied to g and f or to $B^{(j)}$ and $B^{(i)}$ to compute values for each of these functions and its first three derivatives with respect to its argument.

Cubic Spline Fitting

Properties

Let $h(u)$ be any function, h, of any variable, u, whose values, h_i, are known only for a distinct and increasing set of points:

$u_i, i = 1, I$ with $I \geq 3$

and whose terminal first derivatives

$h_1' \equiv h'(u_1)$ and $h_I' \equiv h'(u_I)$

are known (or can be stipulated). The cubic spline fit, $s(u)$ for h, has the following properties:

1. The function $s(u)$ is defined for the interval $[u_1, u_I]$.
2. On any subinterval $[u_i, u_{i+1}]$, s is a cubic polynomial.
3. Known values for h are fitted exactly --

$s_i = s(u_i) = h_i, s'_i = s'(u_i) = h_i'$

and $s_i'' = s''(u_i) = h_i''$.

4. On the whole interval $[u_1, u_I]$, s has continuous first and second derivatives.
5. The third derivative is piecewise continuous (from 2, s'''' is constant on each subinterval (u_i, u_{i+1}); $i = 1, I - 1$).

Construction

From Properties 2 and 4 above, we deduce

$$d_i s''_{i-1} + 2(d_i + d_{i-1}) s''_i + d_{i-1} s''_{i-1} = 3(d_i s_i - s_{i-1})/d_{i-1} + d_i (s_{i+1} - s_i)/d_i$$

for $i = 2, I - 1$, where $d_i = u_{i+1} - u_i$. In accordance with Property 3, we substitute the known values of h_i, h_i', and h_i'' for the s_i, s_i', and s_i'' a system of linear equations to solve for $s''_i, i = 2, I - 1$. This system is tridiagonal with diagonal dominance; hence, it is always determinate.
The values of s, s', s'', and s''' are readily determined for any point u in any sub-interval $[u_i, u_{i+1}]$ by (u_i, s_i, s_i') and $(u_{i+1}, s_{i+1}, s_{i+1}')$. The values, s and s'', can be determined from (u_i, s_i, s_i') and (u_1, s_1, s_1'). We can find an interpolative value of h and estimated values for h', h'', and h''' at any $u \in [u_i, u_{i+1}]$ by assuming that these are equal respectively to s, s', s'', and s''' at u.

Fitting Field Measurements

Polar Mesh

Where the median-plane vertical component of the field is expressible as the product of a function of radius alone and a function of azimuth alone (this is the case in each quarter section of the Bevatron with $1.8 \leq \theta \leq 88.2$), we have

$$B(\theta, R, 0) = g(\theta) \cdot f(R).$$

With a set of measurements $g_i = g(\theta_i); i = 1, 2, \ldots, I$ with $I > 3$, we measured in radians for later convenience, we must make a careful estimate $g_i^1 = \frac{g(\theta_i)}{\theta_i}$ and $g_i^2 = \frac{g'(\theta_i)}{\theta_i}$. Then, we can construct a cubic spline fit for g, and values for g, g', g'', and g''' can be computed for any θ in $[\theta_1, \theta_I]$.

Values for B and its partial derivatives up to third order for any point, (θ, R), in $[\theta_1, \theta_I] \times [R_1, R_I]$ can be readily computed from:

$$\frac{\partial B}{\partial \theta} = g(\theta), \quad \frac{\partial B}{\partial R} = g'(\theta),$$

$$\frac{\partial^2 B}{\partial \theta^2} = g''(\theta), \quad \frac{\partial^2 B}{\partial \theta \partial R} = g'(\theta), \quad \frac{\partial^3 B}{\partial \theta^3} = g'''(\theta).$$

Rectilinear Mesh

Separation of the rectilinear variables, (x, y), is not often practical (usually not possible). When the vertical component B has been measured on a complete rectangular grid $(x_i, y_j); i = 1, 1 \leq i \leq I, j = 1, J \leq J$, we can, for each fixed i, use the values

$$B_i^1 = B(x_i, y_j) = B_{i, j}$$

and carefully estimate the terminal derivatives with respect to x.

$$B_i^2 = B_{i, j} - B_{i, j} = B_{i, j}'$$

and

$$B_i^3 = B_{i, j} - B_{i, j} = B_{i, j}''$$

then construct the cubic spline fit of B_i^1, obtaining $B_i^2 = B_{i, j}''(x_i)$ for $i = 2, 1 \leq i$.

Similarly, for each fixed x_i, we use the values

$$B_j^1 = B_i^1(y_j) = B(x_i, y_j),$$

and estimate terminal first derivatives with respect to y and construct the cubic spline fit of B_j^1, determining the remaining first derivative values at the y_j.

At the grid points $(x_i, y_j); i = 1, 1 \leq i \leq I, J \geq 3$, we can now set

$$\frac{\partial B}{\partial x} = B_i^1(y_j) \quad \text{and} \quad \frac{\partial B}{\partial y} = B_j^1(x_i).$$

Interpolation and higher-order differentiation is discussed later.

Sometimes (as was the case in the Bevatron) the measurement grid is not rectangular. For one of the rectilinear variables, say y, for some set of $y_i; j = 1, 1 \leq j \leq J$, we may have a set of measurements $B(x_i, y_j); i = 1, 1 \leq i \leq I$. For each fixed j, we use the values

$$B_{i, j} = B(x_i, y_j),$$

estimate terminal derivatives, and construct a cubic spline fit for each $B_{i, j}$. We select some set of $x_i; i = 1, I \geq 3$ with

$$\frac{x_i}{x_i} = \max_{j \leq j} x_i \quad \text{and} \quad \frac{x_i}{x_i} = \min_{j \leq j} x_i.$$

We then interpolate on the cubic spline to obtain values for $B_{i, j}(x_i)$, then set

$$B(x_i, y_j) = B_{i, j}(x_i),$$

which gives us values for B on the rectangular mesh (x_i, y_j). We can now proceed as outlined in the previous paragraphs.

Now, from the cubic spline fits of $B_{i, j}(x_i)$ on the complete rectangular mesh, we compute at each grid point (x_i, y_j) values for $B_{i, j}^1, B_{i, j}^2, B_{i, j}^3$, and set

$$\frac{\partial^2 B}{\partial x^2} = B_{i, j}^2(\frac{x_i}{x_i}) \quad \text{and} \quad \frac{\partial^3 B}{\partial x^3} = B_{i, j}^3(\frac{x_i}{x_i}).$$

The mixed third partial derivatives, $\frac{\partial^3 B}{\partial x \partial y^2}$ and $\frac{\partial^3 B}{\partial x^2 \partial y}$ cannot be obtained directly from the spline fit. The assumption that $\frac{\partial^2 B}{\partial x \partial y}$ is constant over the subintervals, $(x_i, x_{i+1}); i = 1, I - 1$ for each fixed $j; j = 1, J$ gives

$$\frac{\partial^3 B}{\partial x^2 \partial y} = \left(\frac{\partial^2 B}{\partial y^2}(x_i) - \frac{\partial^2 B}{\partial y^2}(x_{i+1}) \right) / [x_{i+1} - x_i].$$
and we may set
\[\frac{\partial^3 B}{\partial x \partial y^2} (x_1, y_j) = \frac{\partial^3 B}{\partial x \partial y^2} (x_{i-1}, y_j). \]

Similarly, for \(j = 1, J - 1 \), with each fixed \(i \); \(i = 1, I \)
\[\frac{\partial^2 B}{\partial x^2 \partial y} (x_1, y_j) \]
\[= \left[\frac{\partial^2 B}{\partial x^2} (x_{i+1}, y_j) - \frac{\partial^2 B}{\partial x^2} (x_1, y_j) \right] / y_{j+1} - y_j, \]
and for \(J \)
\[\frac{\partial^3 B}{\partial x^2 \partial y} (x_1, y_j) = \frac{\partial^3 B}{\partial x^2 \partial y} (x_1, y_{J+1}). \]

There are several ways to compute \(\partial^2 B / \partial x \partial y \) at grid points. One is to expand \(\partial R/\partial y \) from \((x_1, y_j)\) to \((x_{i+1}, y_j)\) for each \(j \) and for \(i = 1, I - 1 \) and solve for \(\partial^2 B / \partial x \partial y \) at \((x_1, y_j)\):
\[\frac{\partial^2 B}{\partial x \partial y} (x_1, y_j) = \frac{\partial^2 B}{\partial x \partial y} (x_{i+1}, y_j) \]
\[= \left[\frac{\partial^2 B}{\partial x \partial y} (x_{i+1}, y_j) - \frac{\partial^2 B}{\partial x \partial y} (x_1, y_j) \right] / h_i, \]
where \(h_i = x_{i+1} - x_1 \). Then set
\[\frac{\partial^3 B}{\partial x^2 \partial y} (x_1, y_j) = \frac{\partial^3 B}{\partial x^2 \partial y} (x_{i+1}, y_j). \]

We now have for every grid point; \((x_1, y_j)\); \(i = 1, I \) and \(j = 1, J \), values for the median-plane vertical field component \(B \) and all its partial derivatives up to third order.

For any nongrid point \((x, y)\) in \([x_1, x_i] \times [y_j, y_j]\) there is some \(i \), such that \(x_1 < x < x_{i+1} \) and some \(j \) such that \(y_j < y < y_{j+1} \). We can write expansions for \(B \) and its first and second derivatives from \((x_1, y_j)\) to \((x, y)\) terminating with the third derivatives at \((x_1, y_j)\). Third derivatives at \((x, y)\) may simply be set equal to their counterparts at \((x_1, y_j)\).

Field Components Off Median Plane

The nonvertical components \(B_u \) and \(B_w \) are zero in the median field. From the scalar potential, it can be shown that they are odd functions of \(z \). On the other hand, the vertical component is an even function of \(z \), assuming the value \(B \) in the median plane \((z = 0)\). With small \(z \), we may use a third-degree approximation:

\[B_u(u, w, z) = A_u z + C_u z^3 \]
\[B_w(u, w, z) = A_w z + C_w z^3 \]
\[B_z(u, w, z) = B(u, w, 0) + C_z z^2, \]

where the coefficients \(A, C, A_u, C_u, A_w, C_w \) and \(C_z \) are functions of \((u, w)\) which are defined below for polar variables \((\theta, R)\) and rectilinear variables \((x, y)\), respectively.

Polar Variables

Expressing the scalar potential in polar coordinates and differentiating to obtain field components yields:
\[A_\theta(\theta, R) = \frac{1}{R} \frac{\partial B}{\partial \theta} \]
\[C_\theta(\theta, R) = -\frac{1}{6} \left[\frac{1}{R^2} \frac{\partial^3 B}{\partial \theta^3} + \frac{1}{R^2} \frac{\partial^2 B}{\partial R \partial \theta} \right] \]
\[+ \frac{1}{R} \left[\frac{1}{R^2} \frac{\partial^3 B}{\partial \theta^2 \partial R} \right] \]
\[A_R(\theta, R) = \frac{\partial B}{\partial R} \]
\[C_R(\theta, R) = \frac{1}{6} \left[\frac{\partial B}{\partial R} \right] \]
\[+ \frac{1}{R} \left(\frac{\partial^2 B}{\partial \theta \partial R} \right) \]
where all terms on the right-hand side are evaluated at \((\theta, R, 0)\).

The field components are computed by using:
\[B_\theta(\theta, R, z) = A_\theta(\theta, R) z + C_\theta(\theta, R) z^3 \]
\[B_R(\theta, R, z) = A_R(\theta, R) z + C_R(\theta, R) z^3 \]
\[B_z(\theta, R, z) = B(\theta, R, 0) + C(\theta, R) z^2. \]

Rectilinear Variables

From the scalar potential in rectilinear coordinates, we obtain:
\[A_x(x, y) = \frac{\partial B}{\partial x} \]
\[C_x(x, y) = \frac{1}{6} \left[\frac{\partial^3 B}{\partial x^3} + \frac{\partial^2 B}{\partial x^2 \partial y} \right] \]
\[A_y(x, y) = \frac{\partial B}{\partial y} \]
\[C_y(x, y) = \frac{1}{6} \left[\frac{\partial^3 B}{\partial y^3} + \frac{\partial^2 B}{\partial y^2} \right]. \]
\[C(x, y) = -\frac{1}{2} \left(\frac{\partial^2 B}{\partial x^2} - \frac{\partial^2 B}{\partial y^2} \right) , \]

with terms on the right evaluated at \((x, y, 0)\). Then the field components are computed by using:

\[B_x(x, y, z) = A_x(x, y) z + C_x(x, y) z^3 \]
\[B_y(x, y, z) = A_y(x, y) z + C_y(x, y) z^3 \]
\[B_z(x, y, z) = B(x, y, 0) + C z^2 . \]

Computer Codes

Computer codes SPYGTH, SPBVFR, SPYBYT, SPXTBY, and SPYTBX have been written in FORTRAN 66 for the CDC 6600 which use an existing (Berkeley) library subroutine, SPLYN, to construct spline fits of various Bevatron measured field data. The computer code, BEVORB, tracks particles through the Bevatron magnetic field as expressed by the spline fits. This code has subroutines for interpolation of the spline-fit results. The equations of motion are expressed with \(x\) or \(\theta\) as independent variables (valid when other momentum components are small compared with \(p_x\) or \(p_\theta\)). A Runge-Kutta process of fourth order with input integration steps is used.

Descriptions, listings, and card-input decks are available from the author. It should be realized that these codes were written explicitly for the Bevatron. However, our experience has been that they can be readily modified for other magnetic field configurations.

Conclusion

Computer results of tracking particles through the magnetic field of the Bevatron have been in consistently good agreement with actual results in the accelerator. Since the code, BEVORB, obtains all of its field component information by the methods described in this article, we feel we have strong empirical evidence of the validity of this application of cubic spline fitting.

The cubic-spline-fitting curve is, in general, less likely to have extreme local curvature which may appear when high-degree polynomial fitting is used. Any fitting method involving least squares may introduce considerable distortion of derivative estimates. Local fitting (such as cubic fitting on each set of four successive points) does not preserve continuity of derivatives nor involve any global properties of the data. The cubic spline fit is consistent with the third-order approximation of the field components. If indicated by the data, other third-order splines, such as the hyperbolic spline or damped cubic spline
d could be used.

In our experience on the Bevatron field, the cubic spline fit makes available in useful form the information contained in measurements with very little distortion.

References