SYNCHRONIZABLE HIGH VOLTAGE PULSER WITH LASER-PHOTOCATHODE TRIGGER

P. Chen, M. Lundquist, R. Yi, D. Yu
DULY Research Inc., California, USA

Work Supported by DOE SBIR
1. Introduction
2. Marx Generator
3. Main Switch
4. Transmission Line
5. Summary
1. Introduction

High Gradient Electron Gun Requires a synchronizable Pulser

![Graph showing electric field breakdown limit (GV/m) versus pulse length (ns) for copper electrodes.]

- Electric field breakdown limit (GV/m) versus pulse length (ns) for copper electrodes.
1. Introduction

High Gradient Electron Gun Requirements for a synchronizable Pulser

- Low jitter (< 500 ps)
- Fast rise time (<500 ps)
- Short pulse width (< 2 ns, 1~1.5 ns)
- Fall time (<1 ns)
- Pulse amplitude (~ hundreds of kV, MV)
- Repetition rate (Low: 1~5 Hz)
1. Introduction

Critical issues in a Pulser: reducing jitter, caused mainly by switch devices

- **Fast switch in accelerators**: semiconductor switch, spark gap (electrical or laser trigger), etc.

- **Limitations**: technical problems, cost, size, complications, etc.
 - Short pulse, high voltage: spark gap is often used (simple structure)
 - To improve jitter: laser-triggered spark gap
1. Introduction

Conventional laser-triggered switch

- **Jitter relatively low:** Compared with gas gap switch

- **Low optical energy utilization ratio**
 - For SF₆ and N₂, absorption rate < 0.002/cm
 - 30 cm gas channel, total photons absorbed < 6 %
 - Result: Cost increases greatly as high energy lasers are expensive
1. Introduction

Novel Switch designed by DULY in rf/dc electron gun project

Gas spark gap switch
- Triggered by laser photoelectrons
- Goals:
 - Minimize the jitter of the switch
 - Raise the utilization ratio of the laser beam energy
 - Make the pulser synchronizable
1. Introduction

Pulser Designed for the DC/RF Gun
2. Marx Generator

Energy storage device for dc/rf gun

- **Advantage:** Easy to realize voltage multiplication
- **Drawback:** Large jitter at erection
- **Main switch to control jitter**
3. Main Switch

Connected with Marx generator and control the pulse transmit

- **Trigger**: Laser-Photocathode sub-system
- **Connection**: main electrode 2 at low potential
 main electrode 6 at high potential
- **Properties**: A. Make use of the leftover laser optical energy; B. Input more activation energy to spark gap
3. Main Switch

High vacuum cell with a transparent wall

- **Purposes:** (1) high quantum efficiency (2) long lifetime of the photocathode
- **Triggering mode:** double triggering
- **Properties:** delay acceptable and very low jitter
3. Main Switch

- **Photocathode**: Magnesium
- **Quantum efficiency**: 5×10^{-4} (Moderate)
3. Main Switch

Switch calculations

- **Assumptions:**
 - **UV Laser:** pulse length=100ps, pulse jitter~sub-ps, pulse energy=4 mJ
 - **Model:** radius of anode~1.5 cm, gap between photocathode and anode~1.5 cm, separation between anode and main electron adjacent > 1 cm, length of trigger electrode ~4 cm

- **Photoelectron charge:** \(-3.43 \times 10^{-7}\) Coulomb

- **Capacitance between trigger circuit and adjacent main electrode:** \(2.07 \times 10^{-12}\) F

- **Voltage across the gap between trigger and adjacent main electrode:** 165.7 kV (very high)

- **Electrical energy stored:** 28.4 mJ >> 4 mJ (laser energy)
3. Main Switch

Switch calculations (Cont’n)

- Transit time for photoelectron across the gap between photocathode and anode:

\[t = \frac{m_0 c}{eE} \arccos\left(1 - \frac{eEl}{c^2 m_0}\right) \]

- \(t \) is the transit time; \(m_0 \): rest mass of electron; \(e \): electron’s charge; \(c \): the light speed in vacuum; \(E \): the electric field; and \(l \): distance between photocathode and anode

- Transit time: 276 ps

- Delay: Laser pulse length + transit time + photocurrent conduction time in metal wire < 609 ps (Wire length < 10 cm)
3. Main Switch

- Equal potential lines calculated by SUPERFISH /POISSON code around the electrodes
3. Main Switch

Field distortion type switch

- **Advantage:** multi-point ignition, easy adjustment of trigger gap distance
- **Drawback:** one more trigger circuit connection
4. Transmission Line and Discharger

Discharger on the transmission line:

Impedance of the coaxial transmission line 75 ohm

Discharger breakdown caused by: incident wave + reflection wave

Pulse length: adjustable
5. Summary

- Propose a new trigger mechanism
- Double triggering mode
- Switch having very low jitter
Thank you!

Questions?