LOW-ENERGY DEMONSTRATION ACCELERATOR (LEDA) TEST RESULTS AND PLANS

H. Vernon Smith, Jr., † J. D. Schneider, and R. Sheffield
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

The LEDA 75-keV injector and 6.7-MeV RFQ have been tested with pulsed and cw proton beam currents up to 100 mA. Several LINAC2000 papers give the results of those measurements. A follow-on experiment, to intentionally introduce and measure beam halo on the RFQ output beam, is reported in several papers at this conference (PAC2001). In this paper we summarize the LEDA RFQ commissioning results and the beam-halo measurements and we discuss future test plans for this high-current, high-average-power rf structures test bed.

1 INTRODUCTION

The LEDA RFQ [1] is a 100% duty factor (cw) linac that delivers >100 mA of H^+ beam at 6.7 MeV [2-4]. The 8-m-long, 350-MHz RFQ structure [5] accelerates the dc, 75-keV, 110-mA H^+ injector beam [6] with ~94% transmission. LEDA’s primary objectives are to verify design codes, gain fabrication knowledge, understand beam operation, measure output beam characteristics, learn how to minimize the beam-trip frequency, and improve prediction of costs and operational availability of high-energy linac systems. One such accelerator system, a 600-MeV proton linac [7] for the accelerator-driven test facility (ADTF), is now being designed for use in the Advanced Accelerator Applications (AAA) program.

2 RFQ COMMISSIONING

This section summarizes the RFQ commissioning results given in [1-4] and [8-15].

2.1 RFQ Configuration

The accelerator configuration for beam commissioning of the LEDA RFQ is shown in Fig. 1. Major subsystems are the injector [6], RFQ [1, 2, 5, 10], high-energy beam transport (HEBT) [16], and the beamstop [17]. The injector (Fig. 2 of Ref. 3) matches the 75-keV, 110-mA dc proton beam into the RFQ. Simulations of offline injector measurements [18] indicate the RFQ input beam rms normalized emittance is ≤0.23 π mm mrad [6]. A current modulator feeding the microwave magnetron provides beam pulsing [19] for commissioning and beam-tuning activities. The LEBT diagnostics include a pulsed-current toroid, located directly before the RFQ, which is used in determining the RFQ transmission.

A complete description of the LEDA RFQ, including the RFQ rf-field tuning procedure, resonance control, and operation with the high-power rf (HPRF) and low-level rf (LLRF) systems, is given in [1-5], [10], and the references contained therein. The function of the LEDA HEBT (Fig. 3 of Ref. 3) is to characterize the properties of the 6.7-MeV, 100-mA RFQ output beam and transport the beam with low losses to a water-shielded ogive beamstop [17]. The beamline optics consist of four quadrupole-singlet and two X-Y steering magnets. The HEBT beam diagnostics [20] provide pulsed-beam-current and dc-beam-current measurements.

2.2 RFQ Commissioning Results & Discussion

After modifying the injector and increasing the RFQ rf fields to 5-10% above the design values as described in [1, 2, 4, and 10], we accumulated 21 hr of LEDA RFQ operation with ≥99 mA of cw output beam current and >110 hr with ≥90 mA of cw output beam current [3,4].

We find that, during pulsed beam operation, the RFQ transmission drops abruptly about 100 µs into the beam pulse [4] for RFQ rf-field levels at the design value, for pulse lengths >200 µs, and for RFQ output beam currents >90 mA. The transmission remains constant at the lower value for the duration of the pulse, including long pulses. Figure 2 shows the measured values for the total beam transmission at the start and end of a 500-µs, 2-Hz, 90-mA pulse. At the end of the pulse the total transmission deviates from the PARMTEQM prediction for 108-mA output beam current over the field-level range 88-98% of the design (Fig. 2). The total transmission at the start of the pulse follows the PARMTEQM prediction for the range 0.91 - 1.1 of the design rf-field level. For output
beam currents >90 mA, e.g. 100 mA, the RFQ transmission over the whole pulse, even cw, is increased to the design value by increasing the rf-field level to 105-110% of the design field. Both the rf-power system and the RFQ-cooling system allow this increase — the only drawback is that the RFQ requires 10-20% more input power.

The LEDA RFQ output beam emittance is determined [14,15] from quadrupole-magnet scan measurements [14]. For a 93-mA pulsed beam, the Twiss parameters are \(\alpha_x = 1.8, \alpha_y = -2.5, \beta_x = 36 \text{ cm}, \beta_y = 89 \text{ cm}, \varepsilon_x = 0.25 \pi \text{ mm mrad}, \) and \(\varepsilon_y = 0.31 \pi \text{ mm mrad} \) (rms normalized) [14].

3 BEAM HALO EXPERIMENT

After RFQ commissioning, we installed a 52-magnet FODO channel [21] with which we intentionally introduce and measure beam halo [22]. The objective is to make detailed comparisons [22,23] between predictions of halo-formation models [24] and measured beam properties.

3.1 Beam-Halo Channel Configuration

A schematic drawing of the beam halo channel is shown in Fig. 3. This channel (Fig. 4) contains 52 singlet quadrupole magnets, ten x-y steering magnet pairs, ten stripline beam position monitors, nine x-y beam profile monitors (each unit contains a wire scanner and two halo scrapers as described in [25]), five PMT-based beam-loss monitors, and three AC current toroids [26].

![Schematic of the beam-halo channel. The 6.7-MeV RFQ output H\(^+\) beam enters from the left and exits to the right.](image)

The HS/WS diagnostic device [25] records the beam profile with \(\sim 10^3:1 \) signal-to-noise sensitivity (Fig. 5). The signal-to-noise sensitivity for the wire scanner is \(10^3:1 \) and that for the halo scraper is about an additional \(10^2:1 \). There is about a 2-mm overlap region in which the profile is recorded with both the wire scanner and the halo scraper. The overlap region is used to “join” the data sets. A joined data set for a mismatched 75-mA beam midway down the halo channel is shown in Fig. 5 [27].

3.2 Beam-Halo Measurements

Measurements have been carried out for 75-mA, 50-mA, and 16-mA RFQ output beam currents transporting down the halo channel. As detailed in [22,23], first the matched beam condition is found, then the first four quadrupole magnets are adjusted to give either breathing-mode or a quadrupole-mode mismatch conditions between \(\mu = 0.65 \) and \(\mu = 2 \). The beam profiles are then recorded at each of the nine HS/WS locations, one just after the RFQ, four mid-way down the halo channel, and four at the end of the halo channel. From these profiles the rms beam widths, maximum beam extent, kurtosis, and beam emittance are determined. Preliminary results, based on
4 FUTURE PLANS

We initially planned to install and test two sections of coupled-cavity drift tube linac (CCDTL) structure. However, due to the success of Los Alamos tests [29] of a low-beta super-conducting spoke-resonator structure built for Shepherd et al. [30] at ANL, we now plan to test it in place of the CCDTL. This test will be of a single unit having two gaps that will accelerate the beam from 6.7 MeV to ~7.3 MeV.

5 SUMMARY

The LEDA RFQ has operated with \(\geq 99\)-mA cw output beam for 21 hr cumulative: it has operated >110 hr cumulative with \(\geq 90\)-mA cw output beam. The RFQ output beam emittance for a 93-mA pulsed beam, determined from quadrupole-magnet-scan measurements, is \(\epsilon_x \times \epsilon_y = 0.25 \times 0.31 (\mu \text{ m mrad})^2\) [rms normalized]. After the beam-halo experiment, we plan to test a low-beta superconducting spoke-resonator structure.

REFERENCES