Results From the Initial Operations of the SNS Front End and Drift Tube Linac

A. Aleksandrov

for the SNS collaboration
Introduction: the SNS Project

Parameters:
- P beam on target: 1.44MW
- I beam aver.: 1.44mA
- Beam energy: 1 GeV
- Duty factor: 6%
- Rep. rate: 60Hz
- Pulse width: 1ms

N. Holtkamp, FR103
Commissioning runs

Run #1
- Front End
- beam stop for design beam power
- 800 hours of operation (24/7)

Run #2
- Front End & DTL tank 1
- beam stop and radiation shield for design beam power
- 1136 hours of operation (24/7)

Run #3
- Front End & DTL tank 1,2,3
- Beam stop and radiation shield for reduced beam power (50us, 1Hz)
- 288 hours of operation (24/7)
H⁻ Ion source and LEBT

Radio frequency, multi-cusp ion source.
Electrostatic low energy beam transport line
Electrostatic pre-chopper in the LEBT

History of the beam current delivery during run#1

R&D program and life time tests at “hot spare stand”.

Ion source availability:
Run #1 : 85.6%
Run #2 : 92.4%
Run #3 : 97.8%

N. Holtkamp, FR103
402.5 MHz four-vane RFQ

RFQ transmission vs. RF power
Simulations (blue) and measurements (red)

Output energy measured by Time Of Flight in MEBT = 2.45MeV (2% below design)

During run#2 experienced resonant frequency shift of 500kHz. Returned to operation after retuning the cavity.
2.5MeV MEBT

Schematic MEBT Layout

RMS beam envelope in MEBT. Simulation (solid) and wire scanner measurements (dots).

Beam current after RFQ (red), MEBT (blue)
Measured emittance after MEBT

Beam emittance after MEBT. Vertical (top) and horizontal (bottom)

Design value = .3 mm mrad (RMS normalized)

Dependance of RMS emittance upon peak beam current
Chopping

38 mA

945 ns period

MEBT chopper (10ns, 1e-4)
LEBT chopper (50ns, 1e-2)

Chopping structure

SNS CHOPPER ASSEMBLED TO VACUUM LID

Measured effect of chopper on the beam (LEBT top, MEBT bottom)
402.5 MHz DTL with permanent magnet focusing

RF tuning: C.Deibele, THP65
Setting DTL phase and amplitude

DTL acceptance scan.
Transmission through energy degrade vs. tank phase

DTL phase scan.
Measured dependence of beam phase at tank exit vs. tank RF phase compared with simulations (solid lines) for different RF amplitudes (different colors).
Transmission through DTL1-3

Beam current after MEBT (red), DTL tank1 (green), DTL tank2 (pink), DTL tank3 (blue)
Measured emittance after DTL tank 1

Vertical normalized RMS emittance = 0.3 \(\square \) mm\(\cdot \)mrad

Horizontal normalized RMS emittance = 0.4 \(\square \) mm\(\cdot \)mrad

Absolute calibration of horizontal scanner is under investigation due to discrepancy with wire scanner measurements.
Longitudinal beam parameters

Beam energy after DTL tank1 and tank2 measured using Time of Flight between two BPMs in downstream tanks. Within measurement accuracy from design value.

Longitudinal beam profile after tank measured using Bunch Shape Monitor. Longitudinal emittance derived from profile measurements is close to design value.

A. Feshenko, TUP63
Diagnostics performance

- Beam position and phase monitors
 - Position resolution < 0.2um
 - Phase resolution < 0.5 deg
- Beam current monitors
 - 1-2% accuracy for short pulses
- Wire scanners
 - ~ 1000 dynamic range
 - Require individual bias adjustment depending on energy, beam current
- Loss monitors
 - Commissioned but did not use
- Other devices tested
 - Laser based profile monitor for superconducting linac
 - Laser based beam in gap measuring system
 - Fast Faraday cup
Commissioning results vs. goals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline or Goal</th>
<th>Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEBT peak current [mA]</td>
<td>38</td>
<td>52</td>
</tr>
<tr>
<td>DTL1 peak current [mA]</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>DTL1-3 peak current [mA]</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>DTL1 beam pulse length [msec]</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DTL1 average current [mA]</td>
<td>1.6</td>
<td>1.05</td>
</tr>
<tr>
<td>MEBT horiz. emittance [π mm mrad (rms,norm)]</td>
<td>0.27</td>
<td>< 0.3</td>
</tr>
<tr>
<td>MEBT vertical emittance [π mm mrad (rms,norm)]</td>
<td>0.27</td>
<td>< 0.3</td>
</tr>
<tr>
<td>DTL1 horiz emittance [π mm mrad (rms,norm)]</td>
<td>0.3</td>
<td>0.30 (fit), 0.40 (RMS)</td>
</tr>
<tr>
<td>DTL1 vertical emittance [π mm mrad (rms,norm)]</td>
<td>0.3 (RMS)</td>
<td>0.21 (fit), 0.31 (RMS)</td>
</tr>
<tr>
<td>DTL1 beam duty factor</td>
<td>6.0%</td>
<td>3.9%</td>
</tr>
<tr>
<td>MEBT Beam Energy [MeV]</td>
<td>2.5</td>
<td>2.45 ± 0.010</td>
</tr>
<tr>
<td>DTL2 output energy [MeV]</td>
<td>22.89</td>
<td>22.94 ± 0.11</td>
</tr>
</tbody>
</table>
Operational statistics

<table>
<thead>
<tr>
<th></th>
<th>Run #3</th>
<th>Run #2</th>
<th>Run #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time [hours]</td>
<td>288</td>
<td>1136</td>
<td>800</td>
</tr>
<tr>
<td>Beam available [%]</td>
<td>75</td>
<td>62</td>
<td>53</td>
</tr>
<tr>
<td>Planned shutdown [%]</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Equipment breakdown [%]</td>
<td>19</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Breakdown statistics by equipment group [%]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>15</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>Power supplies</td>
<td>0</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Ion Source</td>
<td>6</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>0</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Controls</td>
<td>4</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Water, vacuum, etc.</td>
<td>75</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>
Status and plans

- Installation of warm Linac (DTL and CCL) has been completed
- DTL4,5,6 and CCL1,2,3 cavities have been RF processed and ready for beam
- Commissioning run#4 will start on September 2nd