Status of the 7 MeV/u, 217 MHz Injector Linac for the Heidelberg Cancer Therapy Facility

B. Schlitt, G. Hutter, F. Klos, C. Muehle, W. Vinzenz, GSI, Darmstadt, Germany

A. Bechtold, Y.R. Lu, U. Ratzinger, A. Schempp, IAP, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
HICAT – The Heavy Ion Cancer Therapy Facility for the University Hospital in Heidelberg

- Particles: p, $^3\text{He}^{2+}$, $^{12}\text{C}^6+$, $^{16}\text{O}^8+$
- Two ECR ion sources
 - 7 MeV/u injector linac
 - 6.5 Tm synchrotron
- Final beam energy:
 - 48 - 430 MeV/u
- 3 treatment stations with rasterscan systems:
 - 2 × fixed horizontal beam lines
 - 1 × isocentric ion gantry
- 1 × quality assurance place for R&D activities
- Building area $\approx 70 \times 60 \text{ m}^2$
- 1000 patients / year
217 MHz, 7 MeV/u Injector Linac

Operating frequency: 216.816 MHz
RF pulse length: ≤ 500 µs @ PRF ≤ 10 Hz
Ion mass-to-charge ratio: $A/q ≤ 3$

B. Schlitt et al., Proc. LINAC 2002, p. 781
Time Schedule and General Status

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>First patient treatment at GSI</td>
</tr>
<tr>
<td>1998</td>
<td>Proposal published</td>
</tr>
<tr>
<td>2000</td>
<td>Technical description</td>
</tr>
<tr>
<td>2002</td>
<td>Call for tenders</td>
</tr>
<tr>
<td>2003</td>
<td>Components ordered from industry</td>
</tr>
<tr>
<td>November 2003</td>
<td>Beginning of excavation activities for the building in Heidelberg</td>
</tr>
<tr>
<td>At present</td>
<td>Production of components in progress, first devices already delivered (to GSI)</td>
</tr>
<tr>
<td>First half of 2005</td>
<td>Beginning of step-by-step installation and commissioning</td>
</tr>
<tr>
<td>2006 / 2007</td>
<td>First patient treatment</td>
</tr>
</tbody>
</table>
400 keV/u 4-Rod Type RFQ

Designed, assembled and tuned at the IAP,
RFQ beam test stand is presently being set up at the IAP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy range</td>
<td>8 – 400 keV/u</td>
</tr>
<tr>
<td>Electrode length</td>
<td>1.28 m</td>
</tr>
<tr>
<td>Tank diameter</td>
<td>0.25 m</td>
</tr>
<tr>
<td>Electrode voltage</td>
<td>70 kV</td>
</tr>
<tr>
<td>RF power loss (pulse)</td>
<td>≈ 165 kW</td>
</tr>
</tbody>
</table>
20 MV IH-Type Drift Tube Cavity

3 Integrated magnetic triplet lenses
56 Accelerating gaps

Energy range 0.4 – 7 MeV/u
Tank length 3.77 m
Inner tank height 0.34 m
Inner tank width 0.26 m
Drift tube aperture diam. 12 – 16 mm
RF power loss (pulse) ≈ 1 MW
Averaged eff. volt. gain 5.3 MV/m

See also Y.R. Lu et al., MOP11, this conference
Linac Quadrupole Magnets

Yoke outer diameter: 130 mm
Yoke length: 42 / 49 / 67 / 81 / 97 mm
Yoke material: VACOFLUX 50
Magnet aperture diameter: 20 mm
Number of turns per pole: 5
1.4 MW Final Stage Cavity Amplifier

Built by BERTRONIX Electronic GmbH, Munich, Germany
217 MHz, 7 MeV/u Injector Linac

Operating frequency \(216.816\, \text{MHz}\)
RF pulse length \(\leq 500\, \mu\text{s} @ \text{PRF} \leq 10\, \text{Hz}\)
Ion mass-to-charge ratio \(A/q \leq 3\)

B. Schlitt et al., Proc. LINAC 2002, p. 781
20 MV IH-type Drift Tube Cavity

3 Integrated magnetic triplet lenses
56 Accelerating gaps

Tank length 3.77 m
Inner tank height 0.34 m
Drift tube aperture diam. 12 – 16 mm
RF power loss (pulse) \(\approx 1\) MW
Averaged eff. volt. Gain 5.7 MV/m

See also Y.R. Lu et al., MOP11, this conference