Baseline Positron Production and Capture Scheme for CLIC

Olivier Dadoun LAL, Orsay Université Paris Sud
dadoun@lal.in2p3.fr

I. Chaikovska, P. Lepercq, F. Poirier, A. Variola (LAL, France), R. Chehab (IPNL, France)
L. Rinolfi, A. Vivoli (CERN, Switzerland)
V. Strakhovenko (BINP, Russia)
C. Xu (LAL, France/IHEP, China)
Foreword

Positron production requirements

1. High energy e^- beam
2. Radiator to produce γ: Amorphous, Undulator, Compton scattering, Crystal
3. Converter to produce e^+e^- pairs: material with high Z value (W)
 - Conventional scheme single thick target
 - Hybrid scheme crystal plus amorphous targets
4. Matching lens to focus the e^+ beam

Outline

• CLIC positron complex
• Channelling effect from a crystal target
• Positrons production using an hybrid source
 Amorphous & Capture studies
• Conclusion
CLIC positron complex

- **CLIC**: Compact Linear Collider
 - J.-P. Delaye’s talk on Friday

- **Need an intense e\(^+\) source @ IP**
 - \#e\(^+\)/bunch : 3.7×10\(^9\)
 - \#bunches/train : 312
 - Repetition : 50 Hz

- **Limitation from the conventional source**
 - Large e\(^+\) emittance values \(\Rightarrow\) transport and damping time
 - Heating and energy deposition density \(\Rightarrow\) melt or breakdown target

- **CLIC e\(^+\) production baseline**

Crystal + Amorphous \(\Rightarrow\) Hybrid Source

Olivier Dadoun, IPAC2010
Channelling effect from a crystal target

- A few GeV electron beam aligned to a $<111>$ oriented crystal

- Enhancement of γ production w.r.t. to pure Bremsstrahlung process

- Due to energy deposition constraints
 - Thin crystal target
 - Converter downstream the crystal

 - Sweeping off the charged particles between the crystal and the amorphous targets

<table>
<thead>
<tr>
<th>E_e (GeV)</th>
<th>t (mm)</th>
<th>N_γ/N_{e-}</th>
<th>$<E_\gamma$ (MeV)></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.0</td>
<td>22.5</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>20.0</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>18.5</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>15.5</td>
<td>110</td>
</tr>
</tbody>
</table>

Olivier Dadoun, IPAC2010
Hybrid source: CLIC positrons baseline

- Crystal thickness few mm
- Amorphous thickness several mm
- \(e^+ \) yield \((N_{e^+}/N_{e^-})\) : 5 to 15
- \(\langle E_{e^+} \rangle \) : 40 to 70 MeV
- After the amorphous
 - Large angles & small dimension
- Matching lens
 - Adiabatic Matching Device (AMD)
AMD effect on the positron beam

- Few GeV e^-
- Pre-Injecteur Linac + Solenoid 0.5 T
- Distance few meters

- $<111> W$ Crystal

- e^+
- γ

- Amorphous

- e^-

- P_x/P

- $<E_{e^+}> : 50$ to 110 MeV

- e^+ yield (N_{e^+}/N_{e^-}) : 1 to 4

- $B(z) = B_{min}/(1+\alpha z)$
 - $B_{max} = 6$ T, $B_{min} = 0.5$ T, $L=0.2$ m

- After the AMD
 - Small angles & large dimensions easier to transport

Olivier Dadoun, IPAC2010
Distance crystal – amorphous studies

- For fix amorphous target thickness the e^+ yield varies slightly
 - AMD large geometrical acceptance
- Long distance is preferable
 - Space for dipole implementation
 - γ spot size \Leftrightarrow energy density deposited

Up to the limit of the AMD geometrical acceptance

- The energy density is max. @ the target exit
- From SLC experiment

Peak Energy Density Deposition (PEDD)

PEDD[W] < 35 J/g
Energy deposition studies

- Increasing the distance contributes to lowering the PEDD

\[P(kW) \]

PEDD & total power considerations

Selected parameters: 5 GeV, z=10 mm & d=2m

- Average power ≈ 10 kW
- PEDD ≈ 22 J/g (60% of margin before breakdown)
e⁺ phase space at the exit of the Pre-Injector Linac

- Downstream the AMD Pre-Injector Linac
 - 2 GHz cavities
 - \(E=10 \text{ MV/m} \)
- After 40 m
 - \(\epsilon_{\text{norm}}(\text{rms}) \approx 7.4 \times 10^{-3} \text{ m} \times \text{rad} \)
 - 200 MeV
 - \(\text{e}^+ \text{ yield } (\text{Ne}^+ / \text{Ne}^-) \approx 0.8 \)

- Is this yield enough?
- Recent studies request to increase by 25%-35% this yield
 - Increase by 25%-35% the e⁻ intensity
 - Average power : 12.5 – 13.5 kW
 - PEDD : 28 – 30 J/g
Conclusion

• CLIC e⁺ production and capture baseline for 3 TeV
 ✓ Positron yield
 ✓ Average total deposition reasonable
 ✓ PEDD below the maximum & still some margin

• Study in progress : hybrid solution for ILC
 – At the IP : 5 × the requested e+ for CLIC
 – Time structure modification (A. Variola)

• Further development
 – Continue the beam positrons transport studies : Injector, Pre Dumping Ring ...
 – 0.5 TeV CLIC option studies
 – Channelling effect implementation in Geant4