The Upgrade Programme for the ESRF Accelerator Control System

• The ESRF Upgrade Programme
• The X-Ray Source Improvements
• The Control System Upgrade
• Conclusion
The ESRF Upgrade Programme

• In 2008, the Council of the ESRF launched the ESRF Upgrade Programme 2009 - 2018
• Funding for a first phase of the Upgrade (2009 to 2015) has been secured to deliver:
 • Eight new long beamlines, mainly with nano-focus
 • Refurbishment of many existing beamlines to maintain them at world-class level
 • Continued leadership for X-ray beam availability, stability and brilliance
 • Major new developments in synchrotron radiation instrumentation
The ESRF Upgrade Programme

• Construction works for the experimental hall extension will start in November 2011
The X-Ray Source Improvements

- **BPMs and Fast Orbit Feedback**
 - Beam position monitoring system replaced at the end of 2009 with 224 Libera measurement systems
 - Exchanged all 96 steerer power supplies in 2010
 - Installed a fast and redundant communication network
 - 8 FPGAs to calculate corrections at a 10KHz rate
The X-Ray Source Improvements

• **BPMs and Fast Orbit Feedback**
 • Currently under commissioning
 • Should be operational at the end of 2011
 • **Improves the beam stability for nano-focus beamlines**

• **MOPKS010 : Fast Orbit Correction for the ESRF Storage Ring**
• **MOPKS014 : Architecture and Control of the Fast Orbit Correction for the ESRF Storage Ring**
The X-Ray Source Improvements

• **Ultra-Small Vertical Emittance**
 - High precision Libera beam position monitors
 - New algorithm for coupling correction for the storage ring
 - A vertical emittance of $\varepsilon_z = 4.4 \pm 0.7$ pm could be reached

• 32 new skew quadrupole magnets have been installed (2011)
 - Correct the coupling induced by insertion device movements
• The goal is an ultra small vertical emittance of $\varepsilon_z = 2$ pm.
• First tests are promising
• **Increase brilliance and reduce divergence**
The X-Ray Source Improvements

- **6 or 7m Straight Sections**
 - Today 5m straight sections with family wise power supply steering
 - Power supplies need to be controlled individually
 - The beam steering algorithms had to be revised
The X-Ray Source Improvements

- **6 or 7m Straight Sections**
 - 4 insertion device segments instead of 3
 - Canted undulator approach
 - 2 insertion device segments per beamline
 - Insertion device flexibility or higher brilliance
The X-Ray Source Improvements

- High Power Solid State Radio Frequency (RF) Amplifiers
 - The RF system is the sub-system with the highest failure rate
 - Replacement of the klystron based RF transmitters with solid state RF amplifiers
 - High redundancy, less power consumption, less tuning effort
 - Installation of the first amplifier is in progress
 - Operation reliability
Control System Upgrade

• Move to a Tango-only Control System
 • Taco developed in the 1990
 • Tango is a collaborative development
 • More features
 • More development and survey tools
 • 2010 still 45% of Taco devices
 • Software redesign of large sub-systems
 • Vacuum, front-ends, insertion devices
 • Long shutdown period from December 2011 until May 2012
 • Reach 80% of Tango devices in 2012
 • Easier maintenance and higher reliability
Control System Upgrade

• Increase the Reliability
 • Tango administration system
 • Overview of all device servers running on control system hosts
 • Configuration and optimization tools
 • Failure statistics to identify infrequently occurring software crashes
 • WEPKN002 : Tango Control System Management Tool

• Survey of all control computers with NAGIOS
 • Detection of CPU, memory or disk problems
Control System Upgrade

• More high-level analysis tools
 • Allow better diagnostics or prediction of problems on the accelerator complex
 • An example is the vacuum leak detection system
 • Based on the residual gas analysers (RGA) installed on the storage ring
 • Detect air leaks, water leaks and any abnormal out-gaging
 • GUI enables the handling of all RGAs around the storage ring
 • Provides complex alarm configuration
 • Online and post-mortem data analysis.
Control System Upgrade

Vacuum leak detection GUI

Air leak footprint:
Masses 14, 28 and 40 (N, N2, and Ar)
Conclusion

• Conducting the upgrade in parallel to full user operation and maintaining the high stability and reliability of the X-ray source is very demanding
• The challenge is to restart the accelerator complex, after 5 month of shutdown, with the same reliability
• All the different modifications and improvements on the X-ray source as well as on the control system will hopefully lead to a successful implementation of the new beamlines.