TANGO collaboration and kernel status

- Brief introduction
- What's new since Icalepcs 2009
- New projects
- Re-thinking the Tango event system
What is Tango?

• An object oriented control system based on CORBA

• Each piece of hardware or software to be controlled (from the simplest to the most sophisticated) is a device

• A device is an instance of a Tango class which is hardware/software specific

• Device supports commands (actions) and attributes (data)
What is Tango?

- Tango class(es) are merged in operating system process called Device Server.

- Device configuration parameters and network address stored in a database.

- 3 types of communication:
 - Synchronous, Asynchronous and Event driven.

- 3 languages: C++, Python and Java.

- Collaboration between several institutes.
What's new since 2009?

- 3 kernel libraries releases
 - Tango 7.1.1 (11/2009)
 - Minor changes and bug fixes
 - Tango 7.2 (10/2010)
 - Thread safety on client part
 - Much faster algorithm used during device server process shutdown
 - Applications are able to subscribe to the same events several times
 - Minor changes and bug fixes
 - Tango 7.2.6 (03/2011)
 - Minor changes and bug fixes
What's new since 2009?

- Packaging
 - Linux binary distribution available
 - Based on Debian packaging system
 - 2 source packages
 - 19 binary packages (including documentation and debug packages)
 - Packages available from a Launchpad Tango-controls Personal Package Archive (PPA)
 - Starting with Ubuntu 11.10, packages available from Ubuntu Software Center
What's new since 2009?

- **Graphical User Interfaces**
 - Python GUI for Tango: Taurus
 - Based on PyQt 4
 - Talk WEAAUST 01 (Wednesday)
 - The C++ GUI (QTango) is now in its release 4 (also based on Qt 4)
 - Poster WEPKS 022 (Wednesday)
 - New widgets added to the ESRF Java GUI (ATK)
 - A newcomer: Comète
 - Java GUI supporting several data sources (not only Tango objects)
 - Poster / Mini oral WEMAU 012 (Wednesday)

- Code generator (Pogo) release 7 based on DSL using Xtext is now routinely used to generate C++ Tango class
What's new since 2009

• Collaboration Management
 • A new Memorandum Of Understanding (MoU)
 • 3 types of collaborators institutes
 • User (Not signing the MoU)
 • Contributors
 • Committers
 • Executive Committee (EC)
 • 1 member for each institute which has signed the MoU
 • Decision made by voting
 • Weight of 1 for each committee member plus 1 extra for each committers institute
 • Executive committee meeting organized at each Tango meeting
On-Going projects

• Java Tango classes and device server
 • Soleil has started an ambitious project of re-factoring and updating this part of the Tango kernel

• Software quality
 • Continuous Integration with Jenkins
 • 20 libraries flavor, 10 device server, 5 test suite
 • Improve the test suite
 • CxxTest selected as testing framework to unify the different test suite we have today
 • Increase test coverage to 75 %
The today's event system

• Based on the CORBA Notification service
 • omniNotify implementation

• Advantages
 • Simple on the event publisher side (no care about number of subscribers)

• Drawbacks
 • Require one extra process per host
 • Unicast network transfer
 • Use of CORBA Any objects
 • In some cases, large memory consumption
 • omniNotify is a dead project!
The new event system

• Based on ØMQ
 • http://www.zeromq.org

• What is ØMQ?
 • ØMQ looks like an embeddable networking library but acts like a concurrency framework. It gives you sockets that carry whole messages across various transports like in-process, inter-process, TCP and multicast. You can connect sockets N-to-N with patterns like fanout, pub-sub, task distribution and request-reply. Its asynchronous I/O model gives you scalable multicore applications, built as asynchronous message-processing task.

• Runs on most operating systems
• LGPL
The new event system

- 0MQ does not provide data encoding / decoding

- For synchronous communications, Tango uses CORBA Common Data Representation (CDR)

- ORB's compiler generates methods to encode / decode data to / from CDR

- Most of the event data are encoded using CORBA CDR and transported using 0MQ.
The new event system

- Transferred data between event publisher and subscriber:
 - String describing the event:
 - Fully qualified Tango attribute name plus the event type
 - A single byte encoding the event sender endianess
 - Some call related data (Coded using CDR)
 - Receiving event receiver object identifier
 - Method name to be called
 - Event data themselves (Coded using CDR)

- 0MQ multipart messages used to transport these data
The new event system

- 0MQ includes OpenPGM for multicast transport
 - http://code.google.com/p/openpgm

- Spreading the events into multicast group (address)
 - Find a way to automatically distribute the event on the available multicast group

- Unicast is still the default

- Multicast supported for some specific events defined by the system administrator
The new event system

• We are using the 0MQ publisher – subscriber pattern (pub-sub)
 • The device server process is the publisher
 • The applications listening for events are the subscribers

• 0MQ subscription is used to filter out unwanted events
 • Subscription are length-specific blobs
 • Subscriber receives only messages beginning with specified subscription buffer
 • The first string sent in event messages is used as subscription buffer
The new event system

• Implementation
 • We are using 0MQ 3
 • Subscription forwarded to the publisher (Unicast only)
 • Less network bandwidth
 • Less CPU consumption on client side
 • 0MQ is written in C / C++ but it's API is C
 • We are using a provided C++ binding
 • 0MQ also provides a Java binding based on JNI
 • Not ready yet for 0MQ 3

• Compatibility old system – new system
 • A new kind of synchronous request exchanged between event subscriber and publisher during Tango event subscription
Conclusion

• Tango Event system
 • Only client and server processes
 • Better performances than previous system
 • Multicasting requires more attention

• Tango
 • It's still an evolving project
 • Problem is not the lack of ideas but rather a lack of resources
 • We now have a clear way to take decision